石墨烯基和氧化锌基多层薄膜的气相沉积法制备及性能研究
[Abstract]:Thin film materials are two-dimensional scale materials with specific properties and applications. The related thin film technology is an effective method to fabricate new functional materials. In recent years, graphene-based composite film and zinc oxide (ZnO)-based composite film have shown excellent performance in the fields of electrode materials, solar cells, electronic devices, energy storage devices, sensors and catalysts, etc. It has a very broad application prospect. In this paper, graphene, graphene-TiO2 multilayer composite films and ZnO/Cu/ZnO sandwich films were prepared by plasma enhanced chemical vapor deposition and physical vapor deposition (magnetron sputtering). Raman (Raman) spectra, X-ray diffraction (XRD), scanning electron microscope (XRD), transmission electron microscope (TEM), atomic force microscope (AFM) (AFM), optical fiber spectrometer and four probes were used to characterize the microstructure of the thin films. The surface morphology and photoelectric properties were tested and analyzed. The main contents are as follows: (1) using Cu foil as catalyst substrate, the conditions of preparing graphene films by PECVD were explored, and high-quality monolayer graphene was successfully obtained under 800oC. The effects of growth temperature, flow rate of methane (CH4) and hydrogen (H _ 2) on the quality and layer number of graphene were studied. It was found that with the decrease of growth temperature, the defects and layers of graphene gradually increased and the conductivity decreased rapidly, and the low CH4 flow rate (1sccm) was beneficial to the formation of high quality graphene, and the increase of CH4 flow rate resulted in the increase of graphene defects. A small amount of H _ 2 or excess H _ 2 will lead to a lot of defects in the growth of graphene. In this experiment, the mass of graphene is the best when the flow rate of H _ 2 is 10sccm. (2) High quality graphene films were prepared by PECVD, and TiO2 was deposited on graphene by magnetron sputtering. Graphene-TiO2 multilayer films were prepared by magnetron sputtering. By comparing the Raman spectra of graphene before and after TiO2 deposition, the charge transfer between graphene and TiO2 was studied. The effect of graphene introduction on the morphology of TiO2 was studied by AFM. It was found that the specific surface area of TiO2 grown on graphene increased obviously. The photocatalytic performance of graphene-TiO2 composite film was studied by photocatalytic degradation of methyl orange. It was found that the effect of graphene film on the degradation of methyl orange by TiO2 was significantly improved. On the one hand, graphene can effectively inhibit the recombination of photogenerated carriers in TiO2 as an electron receiving material, on the other hand, the TiO2 grown on graphene has a larger specific surface area, which provides more reaction points for photocatalytic degradation reaction. The catalytic process has been accelerated. (3) ZnO/Cu/ZnO sandwich films were prepared by magnetron sputtering at room temperature. Firstly, the transmission curve of ZnO/Cu/ZnO multilayer film is simulated by MATLAB program to optimize the structure of the film system in theory so as to guide the experiment. The thickness of ZnO layer, the thickness of Cu layer and the O2/Ar flow ratio of ZnO were changed in the experiment, and their effects on the structure and photoelectric properties of multilayer films were studied. The experimental results show that the block resistance and visible light transmittance of the film increase with the increase of the thickness of the ZnO layer. When the thickness of ZnO is in the range of 40-70nm, the multilayer film exhibits better transmittance, and the transmittance curve is flat in the whole visible light region. Before the Cu layer is continuous, the block resistance decreases with the increase of the thickness of Cu layer, but the transmittance of ultraviolet and visible light decreases gradually. When the flow ratio of O2 / Ar is 1: 4, the block resistance of multilayer film is the highest. After that, as the O2/Ar flow ratio continues to increase, the block resistance gradually decreases, which may be caused by the interface effect.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:TB383.2
【相似文献】
相关期刊论文 前10条
1 宋洪松;刘大博;;石墨烯的制备及石墨烯/PVDF复合材料介电性能的研究[J];化学工程师;2011年08期
2 陈成猛;杨永岗;温月芳;杨全红;王茂章;;有序石墨烯导电炭薄膜的制备[J];新型炭材料;2008年04期
3 黄桂荣;陈建;;石墨烯的合成与应用[J];炭素技术;2009年01期
4 周俊文;马文石;;石墨烯及其纳米复合材料的研究[J];化工新型材料;2010年03期
5 李智军;张晖;薛河;;石墨烯纳米片及其场发射性能研究[J];化工新型材料;2010年S1期
6 王平华;王志刚;刘春华;唐龙祥;向康;;基于π-π相互作用合成星型聚丙烯腈-石墨烯复合材料[J];功能高分子学报;2010年04期
7 王灿;詹亮;乔文明;凌立成;;爆炸法合成石墨烯(英文)[J];新型炭材料;2011年01期
8 翟译晨;翟冠杰;;后摩尔时代取代硅的微电子材料——碳纳米管和石墨烯[J];南京信息工程大学学报(自然科学版);2011年02期
9 韩鹏昱;刘伟;谢亚红;张希成;;石墨烯与太赫兹科学[J];物理;2009年06期
10 黄毅;陈永胜;;石墨烯的功能化及其相关应用[J];中国科学(B辑:化学);2009年09期
相关会议论文 前10条
1 黄毅;梁嘉杰;张龙;许艳菲;王燕;马延风;李飞飞;陈永胜;;石墨烯—聚合物高性能复合材料的制备及性质研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
2 胡连哲;韩双;李海娟;徐国宝;;电化学发光分析新材料及新应用[A];中国化学会第27届学术年会第09分会场摘要集[C];2010年
3 董良旭;张春梅;陈强;刘福平;;等离子化学气相沉积生长石墨烯的研究[A];第十四届全国等离子体科学技术会议暨第五届中国电推进技术学术研讨会会议摘要集[C];2009年
4 彭海琳;刘忠范;;狄拉克纳米材料与器件[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
5 黄毅;梁嘉杰;张龙;许艳菲;王燕;马延风;陈永胜;;石墨烯功能复合材料的制备及应用[A];中国化学会第27届学术年会中日青年化学家论坛摘要集[C];2010年
6 徐宇曦;石高全;;石墨烯和卟琳的超分子组装及其传感应用[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
7 杨乃亮;翟锦;王丹;;利用二维石墨烯桥增强染料敏化太阳能电池中光生电子的传输[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
8 卢春华;李娟;朱春玲;杨黄浩;;基于石墨烯的生物大分子传感[A];中国化学会第27届学术年会第09分会场摘要集[C];2010年
9 刘吉洋;郭少军;翟月明;李丹;汪尔康;;肉豆蔻酰磷脂酰甘油保护石墨烯的制备[A];中国化学会第27届学术年会第09分会场摘要集[C];2010年
10 刘庄;;Sp~2类碳纳米材料在生物医学上的应用-癌症治疗与成像[A];中国化学会第27届学术年会第04分会场摘要集[C];2010年
相关博士学位论文 前10条
1 许士才;石墨烯的制备、表征及光电性质应用研究[D];山东师范大学;2014年
2 沈博;含银、铜、铋的石墨烯复合材料的制备和性能研究[D];中国地质大学(北京);2014年
3 姜全国;掺杂及电场条件下石墨烯若干催化过程的第一原理研究[D];吉林大学;2014年
4 刘芝婷;石墨烯及其氧化物的表面结构和性质的调控[D];华东理工大学;2014年
5 苗萌;小分子在二氧化钛和石墨烯表面吸附与反应的第一性原理研究[D];浙江大学;2014年
6 刘啸宇;石墨烯基和氧化锌基多层薄膜的气相沉积法制备及性能研究[D];吉林大学;2014年
7 谢超;基于石墨烯与硅纳米结构高性能光伏器件的构造与光电性能研究[D];合肥工业大学;2014年
8 刘磊;石墨烯费米速度调制结构中量子输运性质的研究[D];河北师范大学;2014年
9 张学全;石墨烯的功能化及其光电性能研究[D];天津大学;2011年
10 李海东;石墨烯纳米结构中的电子输运性质[D];吉林大学;2009年
相关硕士学位论文 前10条
1 朱振华;石墨烯传感性能理论计算[D];华中师范大学;2014年
2 刘站站;聚合物共价修饰石墨烯的研究[D];华东理工大学;2014年
3 杜蛟;石墨烯及其复合材料对生物小分子的电化学检测[D];苏州大学;2014年
4 侯文俊;石墨烯增强尼龙6纤维的研究[D];苏州大学;2014年
5 邢艳敏;绝缘衬底上石墨烯的形成及其机理研究[D];华中师范大学;2014年
6 王峗;石墨烯用于锂离子电池负极材料的应用基础研究[D];华东理工大学;2014年
7 刘晓彤;石墨烯及柔性器件在有机磷类农药残留分析方面的应用[D];中国农业大学;2014年
8 李亮;石墨烯改性石墨应用于锂离子电池负极材料的研究[D];华中师范大学;2014年
9 李金霞;石墨烯掺杂碳印刷阵列电极的制作及其应用研究[D];宁夏大学;2014年
10 李坤阳;纳米氧化石墨烯基底材料的制备及其在基因转染和干细胞分化中的应用[D];苏州大学;2014年
本文编号:2438498
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2438498.html