基于MSRC的遥感影像面向对象分类研究
[Abstract]:Remote sensing image data has been widely used in various fields because of its advantages such as large coverage, objective and real information, low cost, convenient access and so on. For the traffic industry, the use of high-resolution remote sensing technology, combined with the existing means of traffic information collection, can be used for urban traffic monitoring, road network planning and construction, traffic network operational status discrimination, industry management, Comprehensive decision-making services, such as leadership decision-making, provide effective technical means. However, with the continuous improvement of remote sensing image resolution, the development of feature information extraction technology lags behind, and the application of remote sensing technology in traffic industry is still in the initial stage. Compared with middle and low resolution remote sensing images, high resolution remote sensing images have more abundant spatial information, texture information and geometric information. With the development of remote sensing technology and the improvement of remote sensing image resolution, the information extraction and classification technology of image data is facing new problems and challenges. The traditional pixel-based classification method has been unable to meet the needs of the development of remote sensing technology because of the limitation of its classification accuracy, so object-oriented classification technology emerges as the times require. Object-oriented classification technology in processing remote sensing images, the minimum information extraction unit is no longer a single pixel, but a "homogeneous object" with similar spectral and texture features, so other structural information, including spectral features, can be fully utilized. The accuracy and efficiency of classification are greatly improved. On the basis of object-oriented classification (OO), the image object is obtained by using the marked watershed algorithm. In this paper, a overflow model is proposed, and the label generation mode is modified by this model. At the same time, the edge detection method is used to improve the ability of weak edge extraction and greatly restrain the over-segmentation phenomenon. (2) feature extraction includes spectral information, texture information, edge geometry information and so on. Through different feature combination classification experiments, the classification effect of different features on all kinds of ground objects is analyzed, and the best feature combination is obtained. (3) the weight of each feature is adjusted adaptively by (Multiple Sparse Representation Classification approach,MSRC (multiple sparse representation algorithm of adaptive weight), and the final classification result is obtained. The comparative analysis of quantitative and qualitative experimental results shows that the object-oriented classification method based on MSRC can make full use of the synergetic effect of different features, and the overall classification accuracy and Kappa coefficient have been significantly improved, and better classification results have been obtained.
【学位授予单位】:湖南工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP751
【参考文献】
相关期刊论文 前10条
1 王建仁;魏龙;段刚龙;黄梯云;;自适应学习的多特征元素协同表示分类算法[J];计算机应用;2014年04期
2 黄秋燕;肖鹏峰;冯学智;王珂;;结合相位一致与全变差模型的高分辨率遥感图像边缘检测[J];中国图象图形学报;2014年03期
3 陈林林;杨晨;李敏娟;徐宏伟;;基于形态学梯度重建的分水岭算法改进研究[J];中国印刷与包装研究;2013年04期
4 江怡;梅小明;邓敏;陈杰;陈铁桥;;一种结合形态滤波和标记分水岭变换的遥感图像分割方法[J];地理与地理信息科学;2013年02期
5 段菲;章毓晋;;基于多尺度稀疏表示的场景分类[J];计算机应用研究;2012年10期
6 段刚龙;魏龙;李妮;;基于自适应权重的多重稀疏表示分类算法[J];计算机工程与应用;2014年08期
7 王珂;肖鹏峰;冯学智;吴桂平;李晖;;基于改进二维离散希尔伯特变换的图像边缘检测方法[J];测绘学报;2012年03期
8 时愈;汪国有;刘建国;;基于拓扑结构的分水岭算法[J];华中科技大学学报(自然科学版);2011年11期
9 肖鹏峰;冯学智;赵书河;邓敏;佘江峰;;一种基于相位一致的高分辨率遥感图像特征检测方法[J];遥感学报;2007年03期
10 王文宇;李博;;基于eCogniton的高分辨率遥感图像的自动识别分类技术[J];北京建筑工程学院学报;2006年04期
相关博士学位论文 前3条
1 陈杰;高分辨率遥感影像面向对象分类方法研究[D];中南大学;2010年
2 崔卫红;基于图论的面向对象的高分辨率影像分割方法研究[D];武汉大学;2010年
3 陈忠;高分辨率遥感图像分类技术研究[D];中国科学院研究生院(遥感应用研究所);2006年
本文编号:2460011
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2460011.html