数字高程(DEM)差异性检测及校验方法研究
[Abstract]:The difference of digital elevation data can be divided into subjective data error and objective data error, in which subjective data error refers to man-made replacement of key regional data, and objective data error refers to gross error in surveying. In practical application, the difference of data will bring great influence to scientific research and application. The purpose of this paper is to obtain the expression of the difference between different digital elevations, and to provide the basis for judging the error of DEM. ASTER GDEM (Advanced Spaceborne Heat Emission and reflection Radiometer Global Digital elevation Model) is by far the most widely covered. The digital elevation data provided to users free of charge has a good present situation and has become an important data source in the fields of scientific research and geological application. In this paper, ASTER GDEM is taken as the test case, and the DLR DEM data obtained by German space agency is taken as the assumed true value. The main research methods are as follows: firstly, with the help of the idea of remote sensing image matching, the combination of SURF algorithm and RANSAC algorithm is used for image matching, and the precision of image matching is guaranteed on the premise of inheriting the advantages of SURF algorithm. According to the transverse and longitudinal coordinates of the matching characteristic points, the horizontal deviation is calculated and the three-dimensional diagram of the longitude and latitude offset between ASTER GDEM and DLR DEM is drawn. The second is to use GIS professional software ArcGis to realize the extraction and optimization of small range of feature points, and to match the extracted feature points according to the position relationship between the generated contour lines and feature points, and to calculate the horizontal distance of paired feature points. Import matlab to implement the ASTER GDEM relative to DLR DEM horizontal offset representation. The experimental results show that: (1) the mismatched feature points can be removed successfully after purification of RANSAC algorithm. The results of image matching based on SURF algorithm and RANSAC algorithm are more accurate. (2) the horizontal offset of ASTER GDEM relative to DLR DEM can be seen by comparing the two methods. The ratio of horizontal offset between 0 ~ 30m and 30m-60m is similar to that of the two methods, and the number of feature points extracted by the method based on image matching algorithm is smaller, and the maximum deviation is larger. The matching point obtained by the method of extracting mountain vertices by ArcGis and manually matching is more accurate, but because of the large workload of manual matching, it is not suitable for large experimental areas.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP751
【相似文献】
相关期刊论文 前10条
1 刘斌;杨小平;任涵文;赵亚平;;基于图像匹配的自动点胶系统[J];机械设计与制造;2007年09期
2 王琪;李言俊;张科;;具有距离不变性与角度不变性的图像匹配研究[J];火力与指挥控制;2008年04期
3 邹建成;赵占军;;基于突变理论的图像匹配[J];北方工业大学学报;2010年01期
4 李壮;杨夏;雷志辉;;基于空间子区一致性的异源图像匹配方法[J];国防科技大学学报;2011年01期
5 张家军,张莉,贺安之;基于光学异或逻辑的图像匹配[J];光学学报;1993年03期
6 桂志国,薄瑞峰,韩焱;基于投影特征的图像匹配的快速算法[J];测试技术学报;2000年01期
7 徐寒凌,杨杰,邓志鹏;基于图像匹配品质评价的航迹规划[J];上海交通大学学报;2001年09期
8 郑军,诸静;基于自适应遗传算法的图像匹配[J];浙江大学学报(工学版);2003年06期
9 徐政 ,张纯学;自动光电/红外传感器图像匹配[J];飞航导弹;2005年05期
10 熊凌;;计算机视觉中的图像匹配综述[J];湖北工业大学学报;2006年03期
相关会议论文 前10条
1 徐炜;贺占庄;黄士坦;;基于模糊相似计算的快速图像匹配[A];第16届中国过程控制学术年会暨第4届全国故障诊断与安全性学术会议论文集[C];2005年
2 蒋大林;李琳;;图像匹配技术的研究[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年
3 石鸿雁;贝肇宇;;基于蚁群算法的图像匹配方法[A];2009中国控制与决策会议论文集(3)[C];2009年
4 徐炜;黄士坦;贺占庄;;基于免疫克隆选择算法的快速图像匹配[A];第十二届全国信号处理学术年会(CCSP-2005)论文集[C];2005年
5 牛毅菲;汪渤;苗常青;;图像匹配方法研究[A];《制造业自动化与网络化制造》学术交流会论文集[C];2004年
6 牛毅菲;汪渤;苗常青;;图像匹配方法研究[A];先进制造技术论坛暨第三届制造业自动化与信息化技术交流会论文集[C];2004年
7 熊凌;;计算机视觉中的图像匹配综述[A];12省区市机械工程学会2006年学术年会湖北省论文集[C];2006年
8 唐榕;蒋大林;丁学爽;;基于角点检测的图像匹配方法综述[A];全国第二届信号处理与应用学术会议专刊[C];2008年
9 马苗;鹿艳晶;;基于灰色理论和遗传算法的快速图像匹配方法[A];第16届全国灰色系统学术会议论文集[C];2008年
10 缪君;储s,
本文编号:2470755
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2470755.html