非共沸混合制冷剂低温制冷系统优化及换热特性研究
[Abstract]:In the field of natural gas liquefaction industry, non-azeotropic mixture cryogenic refrigeration technology is widely used, in which plate-finned heat exchanger is mainly used in the cold box of small and medium-sized natural gas liquefaction process. The temperature slip of working fluid heat transfer in cold box is large, which can reach about 200 掳C. In the low temperature evaporation section, the dryness of the mixed refrigerating fluid is low and the flow rate is slow, especially under the condition of low liquefaction load of natural gas, the heat transfer performance of the heat exchanger decreases. However, the theoretical and experimental research on the heat transfer and liquid phase accumulation of plate-wing heat exchanger under this condition is still lacking. In order to study the heat transfer performance of low temperature and low dryness mixed working fluid in plate-wing heat exchanger and establish a theoretical prediction model with practical reference value, a set of plate-wing heat exchanger is built in this paper. Using a mixture (N2 CH4 C2H4 C3H8 iC4H10) similar to that used in a natural gas liquefaction process as a refrigerant and a cryogenic refrigeration system driven by a commercial scroll compressor, on the premise of obtaining a minimum temperature of-160C, The heat transfer performance of low dryness and low velocity mixed working fluid in plate-finned heat exchanger was studied. At the same time, the correlation of condensation and boiling heat transfer of mixed working fluid is studied by scholars at home and abroad. Based on the heat transfer unit model, the total heat transfer coefficient of plate-finned heat exchanger is predicted theoretically, and the results are compared with the experimental results. Based on the experimental data, part of the correlation is modified. On this basis, the optimal design of plate-wing heat exchanger applied to natural gas liquefaction process is improved, and the genetic algorithm is adopted, and the unit entropy increase is taken as the objective function. The pressure drop of cold and hot flow is used as the constraint condition to optimize the channel and finned parameters of the plate-finned heat exchanger, and the improvement direction of the design of the plate-finned heat exchanger is put forward. The heat transfer characteristics of the mixed working fluid are closely related to the flow characteristics. The liquid phase accumulation of the working fluid in the system not only affects the heat transfer performance of the heat exchanger, but also affects the circulating concentration of the mixed working fluid, and the overall performance of the system is also changed. Therefore, the cooling characteristics in the low temperature refrigeration cycle of mixed working fluid, the temperature difference of cold and heat flow in the regenerator, the load change of the heat exchanger and the liquid phase accumulation are analyzed and discussed in this paper. In addition, based on the one-dimensional vertical flow equation of mixed working fluid, the mathematical model of liquid phase accumulation of mixed working fluid in low temperature refrigeration system is established, and the liquid phase accumulation characteristics of mixed working fluid in low temperature refrigeration cycle are analyzed and discussed. And the variation of the concentration of mixed working fluid cycle with the cooling process. The circulating concentration of mixed working fluid in natural gas liquefaction process plays an important role in the efficiency and stable operation of the system. However, it is difficult to adjust the operating cycle concentration to be consistent with the optimized concentration in the actual operation process. Through the optimization of SMR liquefaction process, it is found that the cycle concentration of different mixtures can be obtained by optimizing the mixture under the premise of system (exergy) efficiency as the objective function. At the same time, the temperature difference matching in the heat exchanger is uniform and reasonable when the exergy efficiency is higher than 0.4. In addition, under the condition of different pre-cooling temperature and high and low pressure of the system, the optimized cycle concentration can keep the system running efficiently, which indicates that the concentration ratio of the mixture has strong robustness in the natural gas liquefaction process. In addition, this paper puts forward the adjustment scheme of SMR liquefaction process, which has certain reference value in practical engineering application.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TB657
【相似文献】
相关期刊论文 前10条
1 宋春元;;板翅式换热器的技术进展[J];化工设计通讯;2008年04期
2 张志强;季益忠;杜克镛;韩冬冬;;板翅式换热器真空干燥装置的研制[J];干燥技术与设备;2010年02期
3 张爱民;;板翅式换热器应用研究[J];河南科技;2010年16期
4 修维红;吴晓红;倪利刚;刘孝根;彭小敏;程沛;;板翅式换热器有限元计算及分析[J];石油和化工设备;2012年05期
5 王燕平;徐建忠;毛央平;;板翅式换热器的发展现状及趋势[J];杭氧科技;2012年04期
6 ;发言材料之一:四个月来板翅式换热器攻关情况[J];深冷简报;1972年S3期
7 ;发言材料之二:目前板翅式换热器生产中几个问题的看法[J];深冷简报;1972年S3期
8 ;板翅式换热器钎接测温试验小结[J];深冷简报;1972年S3期
9 ;板翅式换热器[J];化工与通用机械;1972年Z1期
10 杭氧研究所情报组;《国外空分设备铝制板翅式换热器》即将出版[J];深冷简报;1973年04期
相关会议论文 前10条
1 张哲;厉彦忠;许箐;;板翅式换热器物流分配的研究概述[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
2 修维红;吴晓红;倪利刚;刘孝根;彭小敏;程沛;;板翅式换热器有限元计算[A];全国第四届换热器学术会议论文集[C];2011年
3 王方方;关欣;蔡康;崔国民;;板翅式换热器动态设计研究[A];中国化工学会2008年石油化工学术年会暨北京化工研究院建院50周年学术报告会论文集[C];2008年
4 石景祯;崔晓钰;胡忠霞;;板翅式换热器的多目标优化设计[A];中国动力工程学会第三届青年学术年会论文集[C];2005年
5 毛央平;毛绍融;;强化板翅式换热器传热的有效途径[A];2006年大型空分设备技术交流会论文集[C];2006年
6 李相发;姜周曙;江爱朋;吴筱骏;王剑;;大型板翅式换热器气阻特性测控系统的开发[A];中国自动化学会控制理论专业委员会B卷[C];2011年
7 文键;厉彦忠;周爱民;;板翅式换热器换热性能的改进研究[A];2006年大型空分设备技术交流会论文集[C];2006年
8 文键;厉彦忠;;改善板翅式换热器封头流场分布的一种措施[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
9 米廷灿;厉彦忠;;板翅式换热器矩形通道二次表面换热性能理论计算[A];第六届全国低温与制冷工程大会会议论文集[C];2003年
10 张小松;赵开涛;李舒宏;陈季明;;铝制板翅式换热器的传热与阻力特性的试验研究[A];全国暖通空调制冷1998年学术年会论文集(2)[C];1998年
相关重要报纸文章 前4条
1 江莉;新型板翅式换热器高效节能[N];中国化工报;2009年
2 娄蓉;杭氧制成国内首台高低压一体板翅式换热器[N];中国工业报;2014年
3 杨挺 方怡;亚洲最大真空钎接炉在杭氧投用[N];中国石化报;2003年
4 杨挺 方怡;亚洲大型真空钎接炉在杭氧投用[N];中国化工报;2003年
相关博士学位论文 前3条
1 李俊;机载多股流板翅式换热器性能研究[D];南京航空航天大学;2015年
2 曹乐;非共沸混合制冷剂低温制冷系统优化及换热特性研究[D];华南理工大学;2016年
3 张哲;板翅式换热器物流分配特性及换热的研究[D];西安交通大学;2004年
相关硕士学位论文 前10条
1 王飞;板翅式换热器性能实验研究[D];大连海事大学;2011年
2 罗明辉;模块化分子筛吸附器与板翅式换热器芯体内气流分布特性研究[D];华中科技大学;2014年
3 黄超进;板翅式换热器物流分配特性研究[D];上海交通大学;2010年
4 张振生;基于复合形法的板翅式换热器优化设计研究[D];安徽工业大学;2011年
5 董军启;板翅式换热器传热特性研究[D];大连海事大学;2004年
6 张卫星;板翅式换热器的性能分析与实验研究[D];华中科技大学;2006年
7 贺鹏程;工质热物性变化下的板翅式换热器计算研究[D];南京航空航天大学;2009年
8 石小闯;基于模拟退火算法的板翅式换热器优化设计[D];华东理工大学;2012年
9 胡云云;遗传算法优化多股流板翅式换热器通道排列[D];大连理工大学;2012年
10 王坤;小型MRC天然气液化装置板翅换热器动态特性仿真研究[D];哈尔滨工业大学;2007年
,本文编号:2474947
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2474947.html