三维水声数据的可视技术研究
[Abstract]:The research and application of the visualization of underwater acoustic data provide a powerful technical guarantee for the observation of the submarine topography, the exploration of marine resources, the underwater rescue and the marine military. In this paper, the data pre-processing in the visualization of underwater acoustic data and the transfer function in volume rendering are studied in-depth. The main research contents and results are as follows: First, the background of the three-dimensional underwater acoustic data is complicated, the noise is seriously disturbed, etc. An HFCM underwater acoustic data segmentation algorithm combined with three-dimensional FMF is proposed in order to improve the accuracy and efficiency of underwater acoustic data segmentation. The method comprises the following steps of: firstly, selecting a three-dimensional filtering window, calculating a fuzzy threshold by using a maximum entropy threshold method, and performing fuzzy median filtering on the underwater acoustic data in combination with a semi-Gaussian fuzzy membership function; and finally, dividing the filtered data by using an HFCM algorithm. The result of dividing the two groups of different three-dimensional underwater acoustic data shows that the algorithm can effectively reduce the noise interference, and the segmentation effect is better than the non-filtered HFCM and the HFCM segmentation algorithm of the balanced FMF, and the segmentation efficiency is obviously better than the traditional fuzzy C-means algorithm. Secondly, in order to obtain good underwater acoustic data three-dimensional display effect, the opacity transfer function and the color transfer function are designed. firstly, the scalar value of the volume data is mapped into an opacity value; the gradient of the body data is calculated, the non-transparent transmission function is designed according to the gradient amplitude of all the body data points, the two-dimensional opacity transmission function based on the scalar value and the gradient amplitude is finally designed, and the scalar value is designed, The gradient magnitude and the second derivative are mapped to the color transfer function of the HSV color space. The design transfer function is applied to volume rendering. Compared with the scalar value non-transparency transfer function, the drawing result of the two-dimensional opacity transfer function of the gradient is reinforced with the boundary information, and the target is highlighted. The design of the color transfer function makes it easier for the underwater object to be recognized. In this paper, the underwater acoustic data is subjected to noise reduction and segmentation, then the opacity and the color transfer function are designed, and the processed underwater acoustic data is subjected to volume rendering by using the light projection algorithm. The experimental results show that the research work of this paper can get good underwater environment display effect, not only has the target object been highlighted, but also the drawn image is very clear, which is more beneficial to the observation and analysis of the follow-up work.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TB56
【参考文献】
相关期刊论文 前10条
1 高真;叶学义;周天琪;宋倩倩;;基于反距离加权插值的水声数据可视化算法[J];计算机工程;2015年09期
2 卞红雨;沈郑燕;张志刚;刘翠;;基于雁群优化的声呐图像快速阈值分割方法[J];声学与电子工程;2011年03期
3 杨海亮;张森;唐劲松;;宽测绘带多阵合成孔径声纳成像的仿真研究[J];系统仿真学报;2011年07期
4 王士龙;徐玉如;庞永杰;;一种基于PSO优化HWFCM的快速水下图像分割算法(英文)[J];Journal of Marine Science and Application;2011年01期
5 宋坤坡;夏顺仁;徐清;;考虑小波系数相关性的超声图像降噪算法[J];浙江大学学报(工学版);2010年11期
6 桑恩方;沈郑燕;卞红雨;葛光涛;;形态小波域声纳图像去噪算法[J];数据采集与处理;2010年03期
7 周晓明;马秋禾;肖蓉;;基于Canny算子的改进的图像边缘检测方法[J];影像技术;2008年04期
8 严国萍;戴若愚;潘晴;刘袁缘;;基于LOG算子的自适应图像边缘检测方法[J];华中科技大学学报(自然科学版);2008年03期
9 郝颖明,朱枫;2维Otsu自适应阈值的快速算法[J];中国图象图形学报;2005年04期
10 陈为;硬件加速反走样体Splatting算法[J];计算机辅助设计与图形学学报;2005年04期
相关博士学位论文 前1条
1 么彬;多子阵波束域高分辨水声成像技术研究[D];哈尔滨工程大学;2009年
相关硕士学位论文 前4条
1 刘加银;海底声学探测数据综合可视化[D];国家海洋局第一海洋研究所;2015年
2 康健超;基于GPU的器官体数据光线投射算法研究[D];西北大学;2011年
3 程鹏;图像声纳发射与控制模块的设计与实现[D];哈尔滨工程大学;2010年
4 宋坤坡;水声三维数据场的可视化技术研究[D];浙江大学;2010年
,本文编号:2503145
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/2503145.html