基于迁移学习的水声目标识别
发布时间:2023-03-12 00:59
海洋声场环境的时变空变特性、水声目标发声机理的多源性以及其他噪声源的干扰,给水声目标的检测和识别带来很多困难.常规的目标识别手段主要是基于音频时频域特征分析,在复杂海洋环境下的难以获取有效的表征特征及鲁棒的识别效果.为了解决这些问题,本文提出了基于迁移学习的水声目标识别,分别利用预训练网络VGG和VGGish提取深层声学特征及模型微调,实现水声目标的分类识别.实验表明,本文提出的识别算法有效提升了识别准确率,减少了训练时间,基于微调的迁移学习算法在水声目标识别上平均准确率为92.48%,取得了当前最好的识别结果.
【文章页数】:7 页
本文编号:3760611
【文章页数】:7 页
本文编号:3760611
本文链接:https://www.wllwen.com/guanlilunwen/gongchengguanli/3760611.html