当前位置:主页 > 管理论文 > 供应链论文 >

交货期不确定环境下两级供应链竞争模型研究

发布时间:2018-05-19 12:26

  本文选题:交货期不确定 + 两级供应链 ; 参考:《浙江工业大学》2014年硕士论文


【摘要】:目前研究供应链不确定环境的文章很多,但大部分研究都集中在需求不确定,本文针对供应商交货期不确定,分析由单一供应商和单一零售商组成的两级供应链竞争情况。由于各种不确定因素,供应商无法保证交货时间是否准时,而这种不确定性导致供应链成员在做决定时需要采取不同的手段。文章将综合比较分析零售商管理库存(RMI)和供应商管理库存(VMI)环境下的的供应链决策。RMI模式下,构建供应商与零售商的Stackelberg竞争模型,求解讨论零售商最优订货量、供应商最优收益分享份额以及供应链成员绩效,并将其与集成供应链进行比较,在此基础上引入剩余补贴协调供应链。VMI模式下,以不考虑延期交货环境下的Stackelberg竞争模型作为基本模型,在此基础上建立供应商和零售商同时考虑延期交货时的模型,研究供应商和零售商的期望收益,并求出各自情况下供应商的最优生产量和零售商的最优收益分享份额。另外,本文分析集成供应链总体期望利润,并将其与分散决策时的供应链总体利润进行比较。研究结果显示RMI模式下,供应商和零售商的期望收益随交货不确定因素的增加而减少,产品生产成本和批发价对集成供应链的绩效增加作用比较明显;VMI模式下,供应商和零售商的期望收益随交货不确定因素的增加而减少,且产品生产成本对集成供应链的绩效增加作用比较明显。即在不同库存管理模式下,决策者期望通过集成供应链增加供应链绩效时应分别考虑不同因素。由于两种模式下,集中决策时供应链绩效都比分散决策时高,因此分别引入剩余补贴契约优化供应链,实现供应链期望收益的帕累托改进。文章最后对各模型进行数值分析,分析验证结果。
[Abstract]:At present, there are a lot of articles on the uncertain environment of supply chain, but most of the studies focus on the uncertainty of demand. Aiming at the uncertainty of supplier's due date, this paper analyzes the competition of two-level supply chain composed of single supplier and single retailer. Due to various uncertainties, suppliers are unable to ensure that delivery time is on time, and this uncertainty leads supply chain members to take different measures when making decisions. In this paper, the Stackelberg competition model of supplier and retailer is constructed under the environment of retailer managed inventory (RMI) and supplier managed inventory (VMI), and the optimal order quantity of retailer is solved. The supplier's optimal revenue-sharing share and supply chain member's performance are compared with the integrated supply chain. On this basis, the residual subsidy coordination supply chain .VMI model is introduced. Taking the Stackelberg competition model without considering the delayed delivery environment as the basic model, the model of the supplier and the retailer considering the delay delivery is established on this basis, and the expected return of the supplier and the retailer is studied. The optimal output of the supplier and the share of the retailer's income are obtained. In addition, this paper analyzes the overall expected profit of integrated supply chain and compares it with the overall profit of supply chain in decentralized decision-making. The results show that the expected return of suppliers and retailers decreases with the increase of uncertainty of delivery in RMI mode, and the effect of product production cost and wholesale price on the performance of integrated supply chain is obvious. The expected return of suppliers and retailers decreases with the increase of uncertainty of delivery, and the effect of product production cost on the performance of integrated supply chain is obvious. In other words, under different inventory management modes, different factors should be taken into account when decision-makers expect to increase supply chain performance through integrated supply chain. Since the performance of the supply chain in centralized decision is higher than that in decentralized decision, the residual subsidy contract is introduced to optimize the supply chain to realize the Pareto improvement of the expected income of the supply chain. Finally, the numerical analysis of each model is carried out, and the results are analyzed and verified.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F274

【参考文献】

相关期刊论文 前9条

1 赵道致;吕昕;;供应商管理库存理论发展综述与评价[J];北京交通大学学报(社会科学版);2012年01期

2 郭大宁,张健;供应链管理中的联合库存控制[J];东华大学学报(自然科学版);2003年05期

3 刘珩;潘景铭;唐小我;;基于损失厌恶型参与者的易逝品供应链价格补贴契约研究[J];管理工程学报;2011年03期

4 何楠;;具有不确定交货期的供应链协调及效率研究[J];科技和产业;2013年03期

5 丁斌;李伟;吕世平;;基于供应链合作创新的收益共享契约研究[J];合肥工业大学学报(自然科学版);2009年08期

6 卢震,黄小原;不确定交货条件下供应链协调的Stackelberg对策研究[J];管理科学学报;2004年06期

7 岳朝龙;周世军;;不完全信息下动态库诺特模型的均衡分析[J];经济数学;2008年02期

8 朱泽;张予川;高东旭;;随机需求环境下VMI模型研究与应用[J];武汉理工大学学报(交通科学与工程版);2009年03期

9 周宝刚;胡勇;王贤斌;;供应商管理库存利润模型分析[J];物流科技;2007年07期



本文编号:1910091

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/gongyinglianguanli/1910091.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8e355***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com