当前位置:主页 > 管理论文 > 货币论文 >

基于数据挖掘的邮储银行卡客户细分研究

发布时间:2018-06-28 02:15

  本文选题:银行卡 + 客户细分 ; 参考:《浙江工业大学》2012年硕士论文


【摘要】:随着信贷等传统业务的利润空间逐渐萎缩,现代商业银行开始更加注重发展中间业务。银行卡业务是中间业务的重要组成部分,它已成为各个商业银行新的竞争焦点,使得各银行均将银行卡业务逐渐向以客户、数据、信息为中心的经营和服务模式转变,而这种模式的基础即是客户细分。由于数据量巨大和数据的动态性更强,使得传统的基于经验或者统计学方法来细分客户的方法,已经远远不能满足对客户细分工作的需要,而开始采用更自动化和精确的数据挖掘方法来实现对卡客户的细分和管理。 本文以温州市邮政储蓄银行卡客户细分工作为背景,针对该邮储银行保存的大量卡用户数据,使用数据挖掘技术来细分客户,以帮助邮储银行设计相对有针对性的卡产品和服务,创建以客户为中心的营销策略,增加客户满意度,增大客户价值。 本论文的主要工作是: ①首先简要分析了我国银行卡业务的现状和存在的问题,提出本论文要解决的主要问题是对邮储银行的卡客户进行客户细分研究。 ②简单介绍了客户细分的概念和理论,以及国内外商业银行在客户细分方面工作现状,提出我国商业银行大多还是使用传统的细分方法,存在不足之处。 ③介绍了数据挖掘技术的概念和常用的基于数据挖掘的客户细分技术。 ④具体阐述了笔者运用SAS的数据挖掘工具Enterprise Miner,对温州市邮储银行卡客户数据进行分类分析的过程,并对分析结果进行简单评价。 ⑤简单总结了本论文工作的贡献、局限性和对未来的展望。 本文提出使用Entcrprisc Miner运用CHAID决策树方法对客户信息进行分类分析,构建一个分类模型,分析各个分类群众客户的特征,以实现根据未来新客户的基本信息预测其可能的客户类别。通过这种方法为辅助邮储银行经营决策的制定,提高邮储银行的市场竞争力,作出了一定的贡献。
[Abstract]:As the profit space of traditional business such as credit gradually shrinks, modern commercial banks begin to pay more attention to the development of intermediary business. Bank card business is an important part of intermediate business. It has become the new competition focus of each commercial bank, which makes the bank card business gradually change to the customer, data, information as the center of management and service mode. This model is based on customer segmentation. Because of the huge amount of data and the more dynamic nature of the data, the traditional method of customer segmentation based on experience or statistics can not meet the needs of customer segmentation. More automatic and accurate data mining methods are used to realize the segmentation and management of card customers. Based on the customer segmentation work of Wenzhou Postal savings Bank Card, this paper uses data mining technology to segment customers, aiming at a large number of card user data saved by the Postal savings Bank. In order to help Postal savings Bank design relatively targeted card products and services, create a customer-centered marketing strategy, increase customer satisfaction, increase customer value. The main work of this paper is as follows: 1. Firstly, the paper briefly analyzes the present situation and existing problems of bank card business in China. The main problem to be solved in this paper is to study the customer segmentation of card customers of Postal savings Bank. 2 the concept and theory of customer segmentation and the current situation of domestic and foreign commercial banks in customer segmentation are briefly introduced. It is pointed out that most commercial banks in our country still use traditional subdivision methods. This paper introduces the concept of data mining technology and the common customer segmentation technology based on data mining. 4. The author uses SAS data mining tool Enterprise Miner to analyze Wenzhou City. The process of classifying and analyzing customer data of Postal savings Bank Card, The contributions, limitations and future prospects of this paper are briefly summarized. In this paper, Entcrprisc Miner is used to classify and analyze customer information by using the chaid decision tree method, and a classification model is constructed to analyze the characteristics of each classified mass customer, so as to predict the possible customer categories according to the basic information of new customers in the future. This method can help the Postal savings Bank to make operational decisions and improve the market competitiveness of the Postal savings Bank.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP311.13;F830.49

【参考文献】

相关期刊论文 前10条

1 赵连宝;数据挖掘在银行业中的应用[J];北方经济;2005年12期

2 朱晶;李石君;;基于数据挖掘的金融数据分析[J];电脑知识与技术;2010年01期

3 王炜;;银行卡业务数据挖掘应用[J];福建电脑;2007年06期

4 郭崇慧,陆玉昌;预测型数据挖掘中的优化方法[J];工程数学学报;2005年01期

5 蒋缨,强海涛;数据挖掘在商业银行中的应用趋势分析[J];甘肃社会科学;2003年05期

6 李兴国,于海峰,金芳芳;基于数据挖掘的银行业客户关系管理体系结构[J];合肥工业大学学报(自然科学版);2004年07期

7 侯宇;田静;;基于决策树方法的数据挖掘分析[J];华南金融电脑;2009年08期

8 王越,曹长修;DM技术在信用卡管理中的应用[J];计算机工程与应用;2002年10期

9 唐华松,姚耀文;数据挖掘中决策树算法的探讨[J];计算机应用研究;2001年08期

10 李欣;;商业银行客户细分模型的建立与应用[J];统计与决策;2008年09期



本文编号:2076268

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/huobilw/2076268.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b9bbc***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com