通信业客服热线文本主题识别与演化研究
[Abstract]:Customer service hotline (customer service hotline for short) is an important channel for enterprises to get users' voice in time. For a long time, due to the limitation of technical means, customer service hotline data analysis is only aimed at structured data such as traffic, user satisfaction, etc., but it is not deep for unstructured data mining of voice transliteration which contains potential value. With the explosive growth of customer service hotline traffic and the expansion of the category and scope of user complaints, how to quickly identify complaint topics from mass hotline text data and study the emotional evolution trend of users' complaints. Customer service personnel become an important practical problem to be solved. Customer service hotline text mining belongs to the research category of opinion mining. Most of the existing opinion mining objects are mainly Internet text data, but the research on customer service hotline text mining in enterprises is still rare. The research in this paper is of great theoretical significance for expanding the research scope of opinion mining and verifying the applicability of relevant theories and methods. Based on the theory and method of opinion mining and using R language as programming tool, this paper makes a deep semantic and emotional analysis on the text information of a customer service hotline from September 2013 to September 2014. The automatic identification of hot line text topic and the prediction of emotional trend are realized. Specifically, at the level of semantic analysis, using the structural topic Modeling (STM) algorithm, more than 700,000 text records are automatically classified into 20 topics. After designing text affective polarity intensity algorithm and summarizing the distribution characteristics of hot-line text topic content / affective tendency, using time series autoregressive analysis method to predict the tendency of emotional tendency of 20 themes. This paper summarizes the characteristics of emotional evolution of different types of hot wire text. Through the above research, firstly, we construct a framework of opinion mining analysis suitable for the text situation of customer service hotline in the communication industry. Secondly, we verify the structured topic modeling algorithm, respectively. The applicability of text affective polarity intensity algorithm and text subject time series autoregressive prediction method based on affective polarity in the field of customer service hotline text semantic mining and emotional mining. On the practical level, the developed program has realized the automatic identification and classification of the customer service hotline text topic, and the prediction of the trend of emotional tendency evolution of the text theme, which has expanded the new thinking of the operator customer service department based on the hot line text data decision-making. Future research can be improved in terms of dimension diversity and quasi-real-time analysis: on the one hand, consider adding other "metadata" of hotline work order, such as the complainant, complaint location, problem level and other factors into the thematic model. On the other hand, the realization of R single program is combined with distributed systems such as Spark to improve the quasi-real-time performance of analysis.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.1;F626
【参考文献】
相关期刊论文 前10条
1 杨海霞;吴维芳;孙含林;;基于STM分析旅行者对不同档次酒店的偏好差异[J];现代图书情报技术;2016年09期
2 梁昕露;李美娟;;电信业投诉分类方法及其应用研究[J];中国管理科学;2015年S1期
3 王博;刘盛博;丁X;刘则渊;;基于LDA主题模型的专利内容分析方法[J];科研管理;2015年03期
4 史伟;王洪伟;何绍义;;基于微博情感分析的电影票房预测研究[J];华中师范大学学报(自然科学版);2015年01期
5 蒋翠清;梁坤;丁勇;刘士喜;刘尧;;基于社会媒体的股票行为预测[J];中国管理科学;2015年01期
6 周咏梅;阳爱民;杨佳能;;一种新闻评论情感词典的构建方法[J];计算机科学;2014年08期
7 邸亮;杜永萍;;LDA模型在微博用户推荐中的应用[J];计算机工程;2014年05期
8 胡吉明;陈果;;基于动态LDA主题模型的内容主题挖掘与演化[J];图书情报工作;2014年02期
9 王文文;周澍民;;社会化媒体对电影票房的预测价值研究[J];新闻传播;2013年12期
10 史庆伟;李艳妮;郭朋亮;;科技文献中作者研究兴趣动态发现[J];计算机应用;2013年11期
相关硕士学位论文 前6条
1 董文;基于LDA和Word2Vec的推荐算法研究[D];北京邮电大学;2015年
2 褚卫艳;基于投诉历史数据的分析和预测系统设计[D];北京邮电大学;2013年
3 董婧灵;基于LDA模型的文本聚类研究[D];华中师范大学;2012年
4 彭柳艳;中文网络产品评论的特征抽取及观点分类研究[D];武汉纺织大学;2011年
5 严孙荣;中文产品评论的意见挖掘研究[D];北京交通大学;2010年
6 张巧;基于用户评论的社会化媒体新闻推荐系统研究[D];西南财经大学;2010年
,本文编号:2134103
本文链接:https://www.wllwen.com/guanlilunwen/sjfx/2134103.html