面向冷链物流品质感知的物联网数据采集与建模方法
本文关键词:面向冷链物流品质感知的物联网数据采集与建模方法 出处:《中国农业大学》2017年博士论文 论文类型:学位论文
更多相关文章: 冷链物流 压缩感知 物联网 数据采集 数据建模
【摘要】:冷链物流品质感知技术是确保食品质量安全的重要手段,当前冷链物流实际过程中的环境参数的多源耦合性、品质参数的多样性及供应链的信息不对称性等特性阻碍了冷链物流品质感知技术的发展应用及其推广。本研究针对冷链物流品质感知的以上三个主要特性出发,紧密围绕冷链物流"感知数据集、耦合品质集、动态数据追溯集"三个核心品质感知关键,以植物源性的鲜食葡萄以及动物源性的水产品为研究实例,设计和研发了冷链物流品质感知的物联网软硬件,构建了冷链物流的压缩感知数据采集方法、温度品质耦合建模方法以及可追溯建模方法,并以QR溯源条码为载体,有效集成并展示了冷链物流品质感知过程的关键质量安全信息,形成了冷链物流品质感知的物联网溯源模式,最终构建形成了一套系统化面向冷链物流品质感知的物联网数据采集与建模方法,实现了冷链物流过程的安全性、透明性及其可追溯性。本研究的主要贡献如下:(1)明确了冷链物流具体业务流程、网链结构及其特征情况,对冷链物流流程结构及其物联网数据采集与建模进行了形式的定义与分析,并设计与构建了冷链物流过程中的流程结构及其物联网数据采集与建模形式化模型,为本文后续的详细研究开展提供清晰分明的关系脉络。(2)研发了冷链物流品质感知的物联网数据采集的无线传感器节点、由协调器和ARM模块所组成的物联网汇聚节点的硬件和软件,其性能测试表明,物联网节点能够准确反映其冷链环境关键参数的波动变化情况,当发射功率在1dBm时,物联网节点的有效通信距离在30m左右,且具有相对稳定的RSSI值以及相对低的工作功耗,能够满足冷链范围内的数据采集需求。(3)分析了压缩感知数据采集方法,构建了基于双正交小波变换的稀疏变换矩阵的冷链物流感知数据稀疏压缩采样模型、冷链物流稀疏压缩采样感知数据重构模型以及冷链物流压缩感知的重构性能评价模型,并以鲜食葡萄、冷冻罗非鱼冷链实际对方法进行了验证。压缩感知数据采集方法能够实现冷链物流环境感知数据的稀疏压缩采样、传输与重构,并以少量的数据传输量以及最少无线传输时间,提高其信息传输效率,其数据压缩率为76.30%,传输时间约为185.97 ms,物联网汇聚节点平均功耗约为2989.52mW。(4)系统分析了食品冷链物流的温度品质变化特性,基于相关性分析和品质动力学模型方法,构建了冷链物流品质感知过程中的温度品质耦合货架期预测模型,并通过实证分析构建了鲜食葡萄的硬度、失水率以及冷冻罗非鱼的细菌总数、TVB-N等关键品质参数作为为其各自冷链过程的温度品质耦合预测模型,预测效率良好。(5)系统分析了冷物流品质感知的可追溯跟踪过程控制图及其异常状态的判断准则、溯源条形码的分类及QR溯源条码的编码方法等,构建了冷链物流品质感知可追溯跟踪与溯源模型,有效实现了对冷链物流品质感知过程的质量安全信息跟踪与逆向追溯,形成了冷链物流品质感知的物联网溯源模式,并进行了实证分析。
[Abstract]:Sensing technology of cold chain logistics quality is an important means to ensure food quality and safety, the actual environmental parameters of multi-source coupling process in cold chain logistics, information asymmetry and the characteristics of diversity and quality parameters of the supply chain has hindered the development of the application of cold chain logistics technology and perceived quality promotion. This study focused on the cold starting chain logistics quality perception of the above three main characteristics, closely around the cold chain logistics "perception data sets, coupling quality set, dynamic data set back" three core key to perceived quality, plant derived grape and animal aquatic products for example, the design and development of the cold chain logistics quality the perception of the networking hardware and software, the construction of cold chain logistics in compressed sensing data acquisition method, temperature quality coupling modeling method and traceability modeling method, and the QR barcode traceability as the carrier, active set And show the key quality safety information of cold chain logistics quality perception process, forming a networking source model of cold chain logistics quality perception, constructs a set of systematic for cold chain logistics quality aware networking data acquisition and modeling method, realizes safety process of cold chain logistics, transparency and traceability. The main contributions of this study are as follows: (1) the cold chain logistics specific business process, network structure and its characteristics, structure and process of the cold chain logistics network data acquisition and object modeling are defined and analysis form, and the design and construction of the flow structure of the cold chain logistics process and networking data acquisition and modeling of the formal model, provide context clear detail the following study carried out. (2) research and development of cold chain logistics quality aware networking data acquisition The wireless sensor node hardware and software networking nodes composed of coordinator and the ARM module, the performance test shows that the variations of networking nodes can accurately reflect the cold chain environmental key parameters, when the transmit power at 1dBm, effective communication distance networking nodes at around 30m, and has the relatively stable RSSI value and relatively low power consumption, which can meet the requirements of data acquisition within the scope of the cold chain. (3) analysis of the compressed sensing data acquisition method, constructs the cold chain logistics perception data sparse transform matrix biorthogonal wavelet transform compression sampling based on the model of cold chain logistics sparse compressed sampling data reconstruction the perception model of cold chain logistics performance evaluation and reconstruction of compressed sensing model, and the fresh grapes, frozen tilapia cold chain to verify the actual data acquisition method. Compression perception Methods to achieve sparse environment perception of the cold chain logistics data compression sampling, transmission and reconstruction, and with a small amount of data transmission and wireless transmission at time, improve the efficiency of information transmission, the data compression rate is 76.30%, the transmission time is about 185.97 MS, things sink node average power consumption is about 2989.52mW. (4) the system analysis of the temperature quality change characteristic of food cold chain logistics, correlation analysis and quality dynamic model based on the method of constructing the temperature shelf life of cold chain logistics quality coupling quality perception process prediction model, and through the empirical analysis of construction of fresh grape hardness, water loss rate and the total number of bacteria of frozen tilapia, key quality the parameters of TVB-N such as the quality of their respective temperature coupling process of cold chain prediction model, the prediction efficiency is good. (5) analyzed the cold logistics perceived quality traceability tracking Criterion of program-controlled mapping and the abnormal state of origin, classification and origin of QR barcode barcode encoding method, constructs the cold chain logistics perceived quality traceability tracking and traceability model, the effective realization of information tracking quality and safety of cold chain logistics quality perception process and reverse back, forming a networking source model of cold chain logistics the quality of perception, and the empirical analysis.
【学位授予单位】:中国农业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TP391.44;TN929.5;TS205.7
【参考文献】
相关期刊论文 前10条
1 项冬冬;孙士清;;产品缺陷数不可被精确观测过程的加权似然比控制图[J];统计与信息论坛;2017年02期
2 张志强;程伟;谢亚力;彭素敏;;不同贮藏条件对宰后羊肉品质的影响[J];肉类工业;2016年09期
3 吴冬燕;陈园园;石瑞华;吴阳江;;基于Android平台的食品冷链智能监控溯源系统[J];食品工业;2016年08期
4 王雷;姜久雷;王晓峰;;基于Petri网的设计模式形式化描述[J];计算机工程;2016年07期
5 程丽林;范志强;张长峰;王国利;;我国农产品冷链物流标准体系构建的思考[J];物流工程与管理;2016年07期
6 汤东业;;利用手机二维码拓展地理课程资源[J];中学地理教学参考;2016年13期
7 李升升;靳义超;;包装对冷鲜牛肉冷藏保鲜效果的影响[J];家畜生态学报;2016年05期
8 周海霞;;国外农产品冷链物流一体化经验及借鉴[J];世界农业;2016年05期
9 孙晓云;李学工;;我国农产品冷链物流标准现状与发展建议[J];中国果菜;2015年12期
10 王志华;王文辉;佟伟;姜修成;贾晓辉;杜艳民;;不同采收期对红香酥梨冷藏后货架期果实品质的影响[J];保鲜与加工;2015年06期
相关硕士学位论文 前1条
1 王球玲;高产过程中等级质量控制图的研究[D];广州大学;2010年
,本文编号:1368751
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/1368751.html