双氧水法制水合肼的工艺研究与模拟优化
本文关键词: 水合肼 双氧水 丁酮连氮 Aspen Plus 隔壁塔 反应精馏塔 出处:《青岛科技大学》2015年硕士论文 论文类型:学位论文
【摘要】:水合肼是一种应用非常广泛的化学品,主要应用于农业、医药行业、发泡剂、燃料和还原剂等方面。目前国内的生产工艺比较落后,能量消耗较高,原料再利用率小,环境污染严重,原料转化率低。而国外先进工艺对我国实行技术保密,使得国内生产企业只能采用国外淘汰的技术。现有生产水合肼的工艺中,最经济环保合理的工艺是双氧水法。研究和优化双氧水法制肼工艺,对改变我国目前的水合肼市场现状有重要意义。本文针对水合肼生产过程中的问题,对生产工艺进行研究和改进,用Aspen Plus模拟软件对流程进行模拟优化,确定工艺参数,使工艺更加节能环保。(1)选择合适的模型。根据工艺要求,经过分析和物性回归,选择适用性极强、可计算液液分层物系的NRTL模型。经验证,模拟数据和实验结果能够较好地吻合,所选模型正确。(2)丁酮连氮合成工段的设计和优化。经过研究和模拟对比,氨气的回收以及丁酮连氮的合成与提纯采用常压精馏的方式。(3)对分离方案进行优化。在使用隔壁塔进行分离时,可以更好地移出杂质并节省投资。从隔壁塔塔顶采出的杂质和丁酮的摩尔比为0.0230.03,符合回收的标准。同时,优化后冷凝器的能耗节省了24.5%,再沸器的能耗节省了20.6%,设备费用节省47.2%,操作费用节省22.8%,总费用节省24.6%。隔壁塔的主塔理论板数为42块,副塔理论板数为14块,进料位置为副塔第13块板,回流比为7,操作压力为0.101MPa。(4)丁酮连氮水解工段的设计和优化。反应精馏采用单股进料要比多股进料更为合理。本文的反应精馏塔模型中,理论板数为25,进料位置为4,操作压力为0.202MPa,n(水):n(丁酮连氮)=9:1,丁酮连氮的转化率达99.99%,塔釜肼的质量分数为26.20%。反应精馏塔塔顶采出的物流经过相分器得到质量分数为99.06%的丁酮,其中水的质量分数接近0.94%,杂质的质量分数小于0.01%,因此得到丁酮可以回收再利用。双氧水法生产水合肼是一种高效、环保、节能的工艺,研究丁酮连氮的合成、提纯以及水解过程对双氧水法的改进有重要的意义,同时也对国内水合肼工业的发展起到一定的促进作用。
[Abstract]:Hydrazine hydrate is a widely used chemical, mainly used in agriculture, medicine, foaming agent, fuel and reductant. The utilization ratio of raw material is small, the environment pollution is serious, the conversion rate of raw material is low. The domestic production enterprises can only adopt the technology eliminated by foreign countries. The most economical and environmentally rational process for producing hydrazine hydrate is the hydrogen peroxide process. The research and optimization of hydrazine production process with hydrogen peroxide is carried out. It is of great significance to change the present market situation of hydrazine hydrate in China. This paper studies and improves the production process of hydrazine hydrate in view of the problems in the production process of hydrazine hydrate. Aspen Plus simulation software is used to simulate and optimize the process, to determine the process parameters, to make the process more energy saving and environmental protection. 1) to select the appropriate model. According to the process requirements, through analysis and physical property regression. The NRTL model of liquid-liquid stratification system can be calculated by selecting the NRTL model with strong applicability. It is verified that the simulation data and the experimental results are in good agreement with each other. The selected model is correct. 2) the design and optimization of butanone nitrogen synthesis section. Ammonia recovery and the synthesis and purification of butanone nitrogen were optimized by atmospheric distillation. The mole ratio of impurity and butanone extracted from the top of the next tower is 0.0230.03, which meets the standard of recovery. After optimization, the condenser energy consumption was saved 24. 5%, the reboiler energy consumption was 20. 6%, the equipment cost was saved 47. 2%, and the operating cost was 22.8%. The total cost saving is 24.6. the number of theoretical plates of the main tower is 42, the number of theoretical plates of the secondary tower is 14, the feed position is the 13th plate of the secondary tower, the return ratio is 7. The operating pressure is 0.101 MPA. 4) the design and optimization of the hydrolysis section of butanone continuous nitrogen. The single feed is more reasonable than the multiple feed in the reaction distillation. In the model of the reactive distillation column in this paper. The theoretical plate number is 25, the feed position is 4, and the operating pressure is 0.20MPA / n (water: n = 9: 1). The conversion rate of butanone to nitrogen reaches 99.99%. The mass fraction of hydrazine in tower is 26.20. The mass fraction of butanone is 99.06%, in which the mass fraction of water is close to 0.94%. The mass fraction of impurity is less than 0.01, so butanone can be recovered and reused. The production of hydrazine hydrate by hydrogen peroxide is an efficient, environmentally friendly and energy-saving process. The purification and hydrolysis process are of great significance to the improvement of hydrogen peroxide process, and also play a certain role in promoting the development of hydrazine hydrate industry in China.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ226.52
【相似文献】
相关期刊论文 前10条
1 邵国强;叶莉娜;陈丽娟;;电镀废液COD的双氧水降解[J];化工技术与开发;2009年01期
2 赵方;张从良;王岩;;微波辅助双氧水氧化降解水中磺胺二甲嘧啶[J];环境工程学报;2012年11期
3 杨庆一;李道静;;双氧水氧化处理低浓度含锰废水的研究[J];环保科技;2013年02期
4 陈虹,张佳伟,郁桂云,寇佳慧,宗志敏,魏贤勇;两种萃余煤的双氧水氧化产物的GC/MS分析[J];燃料化学学报;2005年01期
5 凌新龙;黄继伟;岳新霞;蒋芳;林海涛;;金属离子-双氧水对山羊绒纤维防缩处理的研究[J];毛纺科技;2011年09期
6 张炳标;双氧水在化学合成中的开发和应用[J];江苏化工;1997年06期
7 周文龙,袁骏,李茂松;双氧水和DCCA处理羊毛的XPS能谱研究[J];纺织学报;2001年05期
8 刘晓燕,顾林玲;双氧水氧化一步法合成TMTD[J];化工中间体;2005年11期
9 施银桃;夏东升;曾庆福;张钱根;彭琳峰;;微波无极紫外光助双氧水处理活性艳红X-3B染料废水研究[J];化学研究与应用;2006年05期
10 盖利刚;段秀全;姜海辉;陈虎;;电位滴定-双氧水氧化法从海带中提取碘[J];无机盐工业;2011年01期
相关会议论文 前2条
1 徐爱华;尹国川;;碳酸氢盐活化双氧水处理染料废水的研究[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
2 陈桂娥;李啸寰;冯斐;许振良;;UV-双氧水处理活性艳兰KN-R染料废水的研究[A];上海市化学化工学会2009年度学术年会论文集[C];2009年
相关硕士学位论文 前5条
1 李海明;芳烯的双氧水选择性氧化反应特性研究[D];合肥工业大学;2015年
2 朱国健;双氧水法制水合肼的工艺研究与模拟优化[D];青岛科技大学;2015年
3 常亭亭;毛针织物环保防缩法工艺的研究[D];西安工程大学;2011年
4 李海洋;双氧水、活性炭、沸石不同组合对污水深度处理的试验研究[D];辽宁工程技术大学;2009年
5 杜红霞;辣根过氧化物酶催化氧化双酚A的特性研究[D];山东农业大学;2009年
,本文编号:1467893
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/1467893.html