面向城市物流配送的车辆优化调度方法研究
本文选题:城市物流 切入点:实际路网 出处:《哈尔滨工业大学》2017年硕士论文
【摘要】:提高车辆调度的效率、合理利用运输资源、综合考虑城市实际路网和交通状况,有利于推动物流配送走向信息化、智能化,是未来城市物流发展方向。现有的车辆调度模式即使采用了智能的调度方式,也未能考虑实际的交通路网的错综复杂性;而在动态车辆调度方法研究中,只考虑了客户的动态需求,常常忽略城市实际变化的交通状况对于车辆优化调度结果的影响,从而导致车辆行驶时间成本的增加和客户满意度的降低。因此本文将在考虑城市实际交通路网的错综复杂性的同时,结合城市实际交通状况的时变性、动态性,合理地调度车辆资源,提高城市物流车辆配送的效率,节约时间成本,提高客户的满意度。本文的研究内容主要包括以下几方面:(1)针对实际交通路网的错综复杂性和动态变化的交通状况对城市物流车辆调度的影响,提出城市物流车辆调度两阶段服务模型。首先,将对基于城市物流配送的车辆调度问题特点进行分析,建立城市实际路网的抽象模型,最后基于该模型建立车辆调度的两阶段服务模型,分析城市物流车辆调度业务流程。(2)为了制定车辆初始行驶路线方案,本文依据两阶段服务调度模型,提出结合交通流对车辆行驶速度的影响,对不同时间段下路段的行驶速度进行区分,建立初始静态阶段的车辆调度数学模型。将问题的优化目标由行驶总距离调整为行驶总时间。最后,利用改良的蚁群算法求解,并用算例数据验证算法的求解能力。(3)为了能实时地响应城市交通状况,本文依据两阶段服务调度模型,提出结合BPR函数模型,考虑在实际配送过程中可能遇到的诸多突发交通状况,建立路线调整阶段的动态车辆调度数学模型。配送车辆每行驶到一个节点,配送中心接收实时交通信息,并据此重新调整车辆配送路径,采用Dynasearch算法求解模型,并用算例数据验证算法的求解能力。(4)为了验证基于实际城市路网和交通状况的智能车辆调度方法研究的应用价值,本文将运用两阶段调度服务模型,采用智能调度算法,对城市物流配送系统进行架构、功能、数据库表的分析和设计,设计与实现系统的核心模块。
[Abstract]:Improving the efficiency of vehicle dispatching, making rational use of transportation resources, synthetically considering the actual urban road network and traffic conditions, is conducive to promoting the logistics distribution to information and intelligence. It is the direction of urban logistics development in the future. Even if the existing vehicle scheduling mode adopts intelligent scheduling mode, it can not take into account the complexity of the actual traffic network. However, in the research of dynamic vehicle scheduling method, It only considers the dynamic demand of the customer, and often ignores the influence of the actual changing traffic conditions on the vehicle scheduling results. This will lead to the increase of vehicle travel time cost and the decrease of customer satisfaction. Therefore, this paper will take into account the complexity of the urban real traffic network, combined with the time variability of the actual traffic situation in the city. Reasonably dispatching vehicle resources, improving the efficiency of urban logistics vehicle distribution, saving time cost, To improve customer satisfaction. This paper mainly includes the following aspects: 1) in view of the complexity of the actual traffic network and the dynamic changes of traffic conditions, the impact of the urban logistics vehicle scheduling, A two-stage service model of urban logistics vehicle scheduling is proposed. Firstly, the characteristics of vehicle scheduling problem based on urban logistics distribution are analyzed, and the abstract model of urban actual road network is established. Finally, a two-stage service model of vehicle scheduling is established based on the model, and the business process of vehicle scheduling in urban logistics is analyzed. Combined with the influence of traffic flow on the speed of vehicles, the speed of road sections in different time periods is distinguished. The mathematical model of vehicle scheduling in the initial static phase is established. The optimization target is adjusted from total travel distance to total travel time. Finally, the improved ant colony algorithm is used to solve the problem. In order to be able to respond to urban traffic conditions in real time, according to the two-stage service scheduling model, a BPR function model is proposed. Considering many unexpected traffic situations that may be encountered in the actual distribution process, a dynamic vehicle scheduling mathematical model is established in the course of route adjustment. The distribution center receives real-time traffic information every time a distribution vehicle travels to a node. In order to verify the application value of intelligent vehicle scheduling method based on the actual urban road network and traffic conditions, the model is solved by Dynasearch algorithm, and the solving ability of the algorithm is verified by the example data. In this paper, we use the two-stage scheduling service model and intelligent scheduling algorithm to analyze and design the structure, function, database table, and design and implement the core modules of the system.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U492.22;TP311.52;TP18
【参考文献】
相关期刊论文 前10条
1 梁本来;杨忠明;秦勇;蔡昭权;;引入梯度下降的蚁群算法求解多约束服务质量路由[J];计算机应用;2017年03期
2 秦军;董倩倩;郝天曙;;基于蚁群模拟退火的云任务调度算法改进[J];计算机技术与发展;2017年03期
3 喻德旷;杨谊;;多受灾点应急救援车辆调度的优化遗传算法[J];计算机系统应用;2016年11期
4 廖天俊;余峗;;面向混合变量和任意时间优化的蚁群算法[J];系统工程与电子技术;2017年03期
5 何纯艳;;多配送中心车辆调度优化问题研究[J];劳动保障世界;2016年30期
6 柴获;何瑞春;马昌喜;代存杰;;求解带硬时间窗车辆路径问题的改进UMDA算法[J];交通运输系统工程与信息;2016年02期
7 梁承姬;崔佳诚;丁一;;基于混合蚁群算法的车辆路径问题研究[J];重庆交通大学学报(自然科学版);2016年03期
8 王阳明;赵利;;基于多车型多约束的动态车辆调度算法研究[J];计算机工程;2016年09期
9 唐金环;戢守峰;沈贵财;;时变网络下考虑碳排放的车辆路径优化[J];系统工程;2015年09期
10 崔明月;黄荣杰;刘红钊;刘旭焱;蒋华龙;;量子遗传算法在公交车辆调度中的应用[J];实验室研究与探索;2014年12期
相关博士学位论文 前2条
1 段晓红;城市快速路网应急车辆动态调度与再配置研究[D];北京交通大学;2016年
2 邢占文;考虑不确定因素条件下带回程取货的车辆路径问题研究[D];长安大学;2011年
相关硕士学位论文 前2条
1 王晨蕾;基于交通流的多车场动态车辆路径问题研究[D];北京交通大学;2016年
2 诸葛敬敏;城市快速道路交通流特性研究[D];北京工业大学;2000年
,本文编号:1664365
本文链接:https://www.wllwen.com/guanlilunwen/wuliuguanlilunwen/1664365.html