熵编码局部坐标分级跳跃渐进式3D网格压缩
发布时间:2018-01-27 15:44
本文关键词: 贝叶斯熵编码 局部坐标 分级跳跃 网格压缩 渐进式 高斯概率模型 边沿触发 出处:《计算机应用研究》2017年10期 论文类型:期刊论文
【摘要】:为进一步提高三维网格压缩算法性能,在高斯混合概率模型(GHPM)基础上,提出基于贝叶斯熵编码的局部坐标分级跳跃渐进式3D网格压缩算法。采用GHPM模型实现3D网格压缩过程的顶点创建、边沿触发器设计、面方向预测以及分级跳跃分割,实现对给定顶点的后验概率几何拓扑符号估计。基于后验概率的算术编码器进行拓扑符号编码,采用不同情景进行设计,提出渐进式的标签预测过程,实现已编码组信息的充分利用,并采用局部坐标系有效压缩几何残差。通过与对比编码器的实验验证,所提算法相对于AD、wavemesh、AAD以及RDO编码器具有更高的压缩比和压缩精度,计算性能更好。
[Abstract]:In order to further improve the performance of 3D mesh compression algorithm, Gao Si hybrid probability model based on GHPM-based. A progressive 3D mesh compression algorithm based on Bayesian Entropy coding is proposed. The vertex creation and edge trigger design of 3D mesh compression process are realized by using GHPM model. The geometric topological symbol estimation of a given vertex is realized by prediction of surface direction and hierarchical jump segmentation. The arithmetic encoder based on posteriori probability encodes topological symbols and designs with different scenarios. A progressive label prediction process is proposed to make full use of the coded group information, and the geometric residuals are effectively compressed using local coordinate system. The experimental results show that the proposed algorithm is relative to AD. The Wavemes AAD and RDO encoders have higher compression ratio and compression accuracy and better computational performance.
【作者单位】: 河南工学院计算机科学与技术系;河南师范大学计算机与信息工程学院;
【基金】:国家自然科学基金资助项目(U1404602) 河南省高等学校重点科研项目(15B520006,15A520063) 河南省教育厅科学技术研究重点项目(14A520046)
【分类号】:TP393.02
【正文快照】: 0引言随着图形和互联网技术进步,3D网格压缩成为实现高效网格模型存储和传输的关键。三角形网格包含几何数据拓扑结构。连通性数据用于区分拓扑结构或顶点间的连通信息,而几何数据描述顶点位置。根据解码策略,3D网格压缩可分为单速率和渐进式编码器。前者可读取完整比特流实现,
本文编号:1468818
本文链接:https://www.wllwen.com/guanlilunwen/ydhl/1468818.html