当前位置:主页 > 管理论文 > 移动网络论文 >

资源优化的启发式算法研究

发布时间:2018-03-17 15:35

  本文选题:资源优化 切入点:连续资源 出处:《中国科学技术大学》2016年博士论文 论文类型:学位论文


【摘要】:资源是一种自然存在物或能够给人类带来财富的物质、能量和信息的总称。资源优化是指决策者按相应的分配方案,对系统所属资源进行具体分配,从而满足系统收益最大化或其他既定目标。提高资源利用效率,优化资源配置已经成为相关学术研究中重点关注的问题。作为战略规划的核心任务,资源优化广泛存在于生产系统调度,项目调度,人力资源管理和云计算资源调度等系统中。资源的众多存在形式使资源优化不存在统一的模式。本文主要研究了启发式算法在不同类型资源优化问题的应用和求解方法,包括连续生产资源(如水,电力等),离散资源(如人力,设备等)和QoS资源(如CPU占用,延迟时间等)。本文的主要贡献包括:(1)研究了单机批调度连续资源优化问题与装箱问题之间的转化关系并提出相应的启发式算法。寻找资源优化问题和其他优化问题之间的转化关系不仅能为问题分析提供依据,而且能使用对应的求解算法进行资源优化。因此资源优化问题与其他优化问题的转化关系亟待研究。我们关注如何将批生产调度中的连续资源优化问题转化为装箱问题,从而利用装箱问题的相关算法求解该资源优化问题。(2)研究了一般资源函数在批调度连续资源优化问题上的应用并提出了相应的近似求解算法。结合上一部分研究工作中批调度连续资源优化背景,我们进一步研究了考虑一般资源函数的单机批调度连续资源优化问题。一般资源函数能够准确反应批调度环境下不同工件的差异性特征。相关研究指出,传统资源函数(如线性和凸递减资源函数)的相关结论和算法不能用于求解考虑一般资源函数的资源优化问题。我们采用边际分析方法分析了考虑一般资源函数的批调度资源优化问题的最优化条件,并以此提出了相应的启发式算法。(3)研究了考虑工件截止时间的离散资源优化问题的复杂度并提出了一个分布估计算法。与上述研究工作不同,我们考虑了单机生产加工的离散资源优化问题。由于离散资源和连续资源物理性质不同,上述相关资源优化方法和结论不能应用于此类问题。根据相关文献研究,将离散资源分配引入传统调度问题可能会改变问题的复杂度。因此,我们首先通过将离散资源优化问题转化为二划分问题论证了该离散资源优化问题的复杂度。由于二划分问题是NP-难问题,并且该转化过程可以在多项式时间内完成,因此该离散资源优化问题也是NP-难问题。为了求解该问题,我们基于一个近似的玻尔兹曼分布提出一个分布估计算法。我们提出了该分布的概率模型,并通过实验论证提供了学习该概率模型的简化方法。实验论证显示该分布估计算法在离散资源优化性能方面优于对比算法。(4)研究了QoS资源互补性的web服务组合问题并提出一个启发式求解框架。QoS资源优化问题存在于web服务组合应用中。不同于连续资源和离散资源,QoS资源是一个集合的概念并且部分QoS属性不具有可加性性质,因此本章研究问题不能采用求解离散资源和连续资源优化算法进行求解。近年来,有研究者指出在web服务组合问题中候选服务的QoS资源具有互补性,并且该互补性会显著影响web服务组合的解的质量。我们的研究主要关注实现相同功能的不同候选服务之间的互补性,并定义其为内部互补性。我们从现实实际背景出发,分析了QoS内部互补性如何影响候选服务和整个web服务组合解。进而,我们根据相应的假设提出了该问题的数学模型并分析了该问题的复杂度:首先,我们通过将该QoS资源优化问题的一个特例转化为多维多选择背包问题论证了该问题是NP-难问题:其次,我们证明了在一般情况下将该问题转化为多维多选择背包问题可能需要指数级时间,从而说明不能通过与背包问题的转化求解考虑QoS内部互补性的web服务组合问题。我们提出一个迭代式的求解框架。在每一次迭代中,该服务组合解的性能是通过求解一个分离背包问题实现的。根据该框架,我们提出两个启发式算法,并且在实验论证中说明它们在时间性能和求解精度要优于相应对比算法。上述实验进一步也说明了本文提出的迭代式求解框架的有效性。
[Abstract]:Resource is a kind of natural existence or to bring the wealth of material, energy and information in general. Resource optimization refers to the decision makers of distribution according to the corresponding scheme, the system resources of the genus specific distribution, so as to meet the maximum system profit or other goals. To improve resource utilization efficiency, optimize the allocation of resources has become focus on the relevant academic research problems. As the core task of strategic planning, resource optimization widely exists in the production system scheduling, project scheduling, human resources management and cloud computing resource scheduling system. Many forms of resources so that resources optimization does not exist a unified model. This paper mainly studies the application of heuristic algorithm in solving and methods of different types of resource optimization problems, including the continuous production of resources (such as water, electricity, etc.) discrete resource (such as manpower, equipment and other resources (such as QoS) and CPU With the delay time, etc.). The main contributions of this thesis include: (1) study the transformation relation between the single batch scheduling problem of resource optimization and continuous packing problem and put forward the corresponding heuristic algorithm. The transformation to find the relationship between resource optimization and other optimization problems can not only provide the basis for the algorithm to solve the problem analysis, but also can use the corresponding resource optimization. To study into the relationship between so resources optimization problem with other optimization problems. We focus on how to batch production scheduling of continuous resource optimization problem is transformed into solving packing problem, thus using correlation algorithm packing problem problem of the resource optimization. (2) studied the general resources function in continuous batch scheduling of resources optimization of application problems and put forward the corresponding approximate algorithm. Combined with a part of the research work in continuous batch scheduling optimization of resource background, I have Further study of the general resources function of single batch scheduling continuous resource optimization problem is considered. The general resource function can accurately reflect the batch scheduling environment of different workpiece characteristics. The study pointed out that the traditional resource function (such as linear and convex decreasing resource function) the relevant conclusions and algorithms cannot be used to solve optimization problems with general resource resources function. We use the marginal analysis method considering the general resources function of the batch scheduling problem of resource optimization optimization conditions, and puts forward the corresponding heuristic algorithm. (3) considering the workpiece as discrete resource optimization problem of time complexity and proposes an estimation of distribution algorithm. The research work with different, we consider the discrete optimization problem of single resource production and processing. Because of the discrete and continuous resources resources of different physical properties, the phase Resources optimization method and the conclusion can not be applied to such problems. According to the relevant literature, the complexity of the discrete resource allocation into the traditional scheduling problem may change the problem. Therefore, we first through the discrete resource optimization problem into the complexity of the two partition problem demonstrates the discrete resource optimization problems. As a result of the two partition problem is NP- hard problem, and the transformation process can be done in polynomial time, so the discrete resource optimization problem is NP- hard. In order to solve this problem, we propose an approximation of the Boltzmann distribution is a distribution estimation algorithm based on probability. We propose a model of the distribution, and provides a simplified method for learning the probability model through the experiments. Experiments show that the estimation of distribution algorithm in discrete resource optimization superior to other compared algorithms. (4) study of the QoS resource The complementary problem of web service composition and proposes a heuristic framework.QoS resource optimization problems in Web service composition application. Different from the continuous and discrete resource resources, QoS resources is a collection of concepts and part of the QoS attribute is not additive in nature, and therefore can not be solved by this chapter studies the problem of discrete resources and continuous resource optimization algorithm to solve this problem. In recent years, some researchers have pointed out the problem of web service composition QoS candidate services are complementary, and the complementary solutions will significantly affect the quality of web service composition. We mainly focus on the complementarity between different candidate services to achieve the same function, and its definition for the internal complementary. We start from the reality background, analyzes how to influence the candidate services and the entire web service combination solution of internal complementary QoS. Furthermore, we according to the corresponding The hypothesis put forward the mathematical model of the problem and the analysis of the complexity of the problem: first, we will through the QoS resource optimization problem into a special case of the multidimensional multiple-choice knapsack problem demonstrates that this problem is NP- hard problem. Secondly, we show that in general the problem is transformed into a multi-dimensional a knapsack problem may require exponential time, which indicates that QoS can not consider internal complementarity problem of web service composition through the transformation and solving knapsack problem. We propose an iterative solving framework. In each iteration, the performance of the service composition solution is achieved by solving a separate knapsack problem according to this framework, we propose two heuristic algorithms, and that they should be better than the corresponding comparison algorithm in time performance and accuracy in experiments. The experiment also shows that further The validity of the iterative solution framework proposed in this paper is proposed.

【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TP393.09;TP301.6

【相似文献】

相关期刊论文 前10条

1 颜蔚;葛世伦;吴立人;;基于P3软件的网络计划资源优化方法研究[J];船海工程;2006年02期

2 蓝伯雄;王威;;企业资源优化模型系统的实现方法[J];计算机集成制造系统;2009年09期

3 李杰;;企业计算机资源优化系统[J];华北水利水电学院学报;2010年01期

4 ;“和佳ERP”企业资源优化管理[J];计算机辅助设计与制造;2000年07期

5 刘志方;基于主动学习的资源优化分配研究[J];科技资讯;2005年24期

6 李秋红;资源量确定的时间-资源优化问题的Petri网方法的应用[J];教育信息化;2002年05期

7 ;哈尔滨啤酒的资源优化系统(BPR/ERP)项目[J];电子商务;2001年11期

8 董鸣皋,刘发全;基于MSProject2000VBA技术的网络资源优化计算机模型设计[J];系统工程理论与实践;2003年12期

9 周康,同小军,许进;资源优化模型及遗传算法[J];华中科技大学学报(自然科学版);2005年10期

10 彭松林;陈福生;;网络资源优化的思考和探讨[J];科技资讯;2012年31期

相关会议论文 前2条

1 彭华;;郑州市优质教育资源倍增工程中的教师资源优化初探[A];2012管理创新、智能科技与经济发展研讨会论文集[C];2012年

2 叶世亮;;SYBASE系统的资源优化管理[A];面向21世纪的图学教育——第十二届全国图学教育研讨会暨第三届制图CAI课件演示交流会论文集[C];2000年

相关重要报纸文章 前9条

1 适闲;资源优化配置的悖论[N];中国经营报;2002年

2 袁杨;重庆院以规范管理促资源优化[N];中国测绘报;2008年

3 吉林大学 赵儒煜 马雪娇;略论东中西部智力资源优化配置[N];光明日报;2012年

4 本报记者 李晓海;银行业委员纵论金融资源优化配置[N];中国城乡金融报;2013年

5 叶迎春;南化资源优化项目全面试车[N];中国石化报;2007年

6 上海荣欣家庭装潢有限公司 陈国宏;企业信息化是企业资源优化配置的保证[N];中华建筑报;2004年

7 记者 叶迎春;南化资源优化项目全部完成[N];中国石化报;2008年

8 宝振国 王朝晖;加大投入推进教育资源优化进程[N];朝阳日报;2008年

9 记者 杭为民;谋求教育资源优化布局 着力强化人才发展支撑[N];盐阜大众报;2013年

相关博士学位论文 前2条

1 梁新乐;资源优化的启发式算法研究[D];中国科学技术大学;2016年

2 王耀刚;高等学校教师资源优化配置研究[D];天津大学;2006年

相关硕士学位论文 前2条

1 吴笑寒;科技资源优化配置及管理创新[D];天津大学;2009年

2 张光辉;高校教师资源优化配置研究[D];南京航空航天大学;2007年



本文编号:1625357

资料下载
论文发表

本文链接:https://www.wllwen.com/guanlilunwen/ydhl/1625357.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4a3c4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com