网格絮凝池PIV测量及实验研究
本文选题:网格絮凝池 切入点:PIV测量 出处:《兰州交通大学》2017年硕士论文 论文类型:学位论文
【摘要】:本文以网格絮凝池模型为试验研究对象,采用粒子成像速度场仪(PIV)对网格絮凝池流场进行测量,获得不同网孔尺寸网格板在不同进水流量条件下的流场信息。基于PIV测试结果,按变化规律信息将速度场划分区域,结合大涡PIV方法探求网格絮凝池内湍动能k及湍动耗散率ε的分布情况,找寻其与速度场划分区域间的联系。同时在相同的前提条件下,进行絮凝实验,深入的研究网格絮凝池流场的水力特性与絮凝效果之间的关系。通过对网格絮凝池模型进行流场PIV测量及絮凝实验研究,可以得出以下主要结论:1.对不同网格板后各向速度进行全面分析,得出水流过网格板后速度变化以纵向速度为主,距网格板越近,纵向速度与横向速度的比值越大;距网孔中心越近,纵向速度与横向速度的比值越大;距格挡中心越近,纵向速度与横向速度的比值越小。2.分析特定网格板(6×6mm)后各特征截面的各向速度,得出水流通过网格板后速度的变化规律基本呈现为三类:加速区、掺混区、稳定区,若改变水力条件,区域划分范围会有弱小的波动。本次试实验中1号网格板(4×4mm)和2号网格板(6×6mm)获取的流场中速度变化规律经历三个过程,加速区、掺混区、稳定区,3号网格板(10×10mm)获取的流场中速度变化规律只经历了加速区和掺混区。3.进水流量越大,水流过网格板后的流速越大,颗粒碰撞的几率随之增大,从而引起湍动能增大,湍动能耗散率增大。利用大涡PIV方法分析流场,距网格板距离一定,在相同进水流量条件下,不同网格板对应的湍动能及湍动能耗散率的波动幅度不同,分析得出,湍动能的波动幅度在加速区、掺混区较大,稳定区较小;湍动能耗散率的波动幅度在加速区较大,掺混区、稳定区较小。4.根据絮凝实验可以得出,改变水力条件对絮凝效果具有明显影响。网孔尺寸过小时,进水流量小,水流过网格板后的流速可以达到设计流速范围,絮凝效果较好;进水流量过大,水流过网格板后流速过大,对流场引起的紊动较大,会破坏已形成的絮体结构,使细小絮体的数量逐渐增加,絮凝效果反而变差。网孔尺寸过大时,随进水流量的改变,水流通过网格板后流速达不到设计流速范围,生成的絮体颗粒相互碰撞几率低,絮凝剂只会局部发生微团内高浓度反应,不能充分与更多悬浮物接触生成絮体并进行沉降,致使絮凝效果差。综合对比得出,2号网格板(6×6mm)的絮凝效果更好。
[Abstract]:In this paper, the flow field of grid flocculation tank is measured by particle imaging velocity field analyzer (PIV), and the flow field information of grid plate with different mesh size under different influent flow rate is obtained. Based on the results of PIV measurement, the flow field of the grid flocculating cell model is studied in this paper. The velocity field is divided into regions according to the changing law information, and the distribution of turbulent kinetic energy k and turbulent dissipation rate 蔚 in the grid flocculation cell is studied by using the large eddy PIV method, and the relation between the velocity field and the velocity field is found. At the same time, under the same premise, the distribution of turbulent kinetic energy k and turbulent dissipation rate 蔚 in the grid flocculation cell is studied. The relationship between hydraulic characteristics and flocculation effect of grid flocculation tank was studied in depth. The flow field PIV measurement and flocculation experiment were carried out on the model of grid flocculation tank. The main conclusions are as follows: 1. The following conclusions can be drawn: 1. The overall analysis of the velocity of different grid plates shows that the variation of water velocity after flowing through the grid plate is mainly the longitudinal velocity, the closer to the grid plate, the greater the ratio of longitudinal velocity to transverse velocity; The closer it is to the center of the mesh, the bigger the ratio of longitudinal velocity to transverse velocity is, and the closer it is to the center of the grid, the smaller the ratio of longitudinal velocity to transverse velocity is. It is concluded that the variation law of the flow velocity after passing through the grid plate is basically presented as three categories: acceleration zone, mixing zone, stable zone, if hydraulic conditions are changed, In this experiment, the velocity variation law in the flow field obtained from the 1 grid plate 4 脳 4 mm and 2 mesh plate 6 脳 6 mm) experienced three processes: acceleration zone, mixing zone, In the stable region, the velocity variation law in the flow field obtained by the No. 3 grid plate 10 脳 10mm only experienced the acceleration zone and the mixing zone .3.The larger the influent flow rate, the greater the velocity of water flowing through the grid plate, and the probability of particle collision increases, thus causing the increase of turbulent kinetic energy. The turbulent kinetic energy dissipation rate is increased. The large eddy PIV method is used to analyze the flow field with a constant distance from the grid plate. Under the same influent flow rate, the turbulence kinetic energy and turbulent kinetic energy dissipation rate of different grid plates are different. The fluctuation amplitude of turbulent kinetic energy is in the acceleration region, the mixing region is larger, the stable region is smaller, the fluctuation range of turbulent kinetic energy dissipation rate is larger in the acceleration zone, the mixing zone and the stable region are smaller. Changing hydraulic condition has obvious influence on flocculation effect. When the size of mesh hole is too small, the flow rate of water can reach the design velocity range, the flocculation effect is better, the influent flow rate is too large, the flow rate of water can reach the design velocity range after flowing through the grid plate, the flow rate of the inlet water is too large, When the velocity of water flows through the grid plate is too large, the turbulence caused by the flow field is larger, which will destroy the structure of the floc that has been formed, and make the quantity of the fine floc increase gradually, and the flocculation effect becomes worse. When the size of the mesh hole is too large, the flow rate changes with the influent. The velocity of flow through the grid plate can not reach the designed velocity range, and the probability of collision between the generated floc particles is low. The flocculant can only produce high concentration reaction in the micro-agglomeration, and can not fully contact with more suspensions to form the floc and make the floc settle. The result shows that the flocculation effect is better than that of No. 2 grid plate (6 脳 6 mm).
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU991.2
【参考文献】
相关期刊论文 前10条
1 毛玉红;冯俊杰;常青;曾立云;叶峰峰;;不同涡流场形态下混凝效能研究[J];环境科学学报;2015年09期
2 李国强;邴帅;刘鹏亮;王卫东;;基于CFD的网格絮凝池栅间距特性研究[J];城市道桥与防洪;2014年11期
3 毛玉红;常青;曾立云;;混凝过程中絮体形貌的PIV成像观测与表征[J];中国环境科学;2014年04期
4 李振亮;;基于VOF法的絮凝搅拌器流场数值模拟[J];科学技术与工程;2013年20期
5 刘心洪;刘燕军;刘英莉;冯文强;赵丹丹;郑国芝;;搅拌槽内湍流动能耗散率的估算进展[J];化工进展;2012年S2期
6 毛玉红;常青;曾立云;余昌全;;亚微涡旋的混凝作用研究[J];中国环境科学;2012年03期
7 詹咏;何玉武;曾小磊;;混凝控制指标下涡漩运动对混凝影响的研究[J];上海理工大学学报;2011年04期
8 薛英文;邵森林;邱寒;;水力絮凝池数值模拟及试验研究[J];中国农村水利水电;2009年09期
9 张秉斌;杨开明;杨小林;王华;;折板絮凝池内流场数值模拟和絮凝效果分析[J];环境工程;2008年06期
10 杨小林;杨开明;张秉斌;邓万全;;折板絮凝池流场的粒子图像测速试验研究[J];环境污染与防治;2008年12期
相关博士学位论文 前2条
1 杨开明;折板絮凝池流场试验研究与数值模拟[D];西南交通大学;2009年
2 詹咏;水流对混凝沉淀影响研究[D];河海大学;2001年
相关硕士学位论文 前9条
1 苏生会;往复式隔板絮凝池流场的实验研究与数值模拟[D];哈尔滨工业大学;2015年
2 孟祥蕾;六角孔网格絮凝工艺的絮凝机理研究[D];河北大学;2013年
3 齐欣;对网格絮凝池内部流场数值模拟的研究[D];昆明理工大学;2012年
4 余昌全;基于FLUENT与PIV技术的折板絮凝流场特性分析[D];兰州交通大学;2012年
5 吴波;泰勒库特流数值模拟方法的研究[D];华中科技大学;2012年
6 饶红美;絮凝反应器流场仿真及对絮体分形成长影响研究[D];哈尔滨工业大学;2010年
7 仲崇军;基于CFD的水处理网格絮凝池优化设计研究[D];华中科技大学;2009年
8 张秉斌;折板絮凝池内部流场的数值模拟和絮凝效果分析[D];西华大学;2009年
9 梁聪;强化混凝技术研究[D];同济大学;2006年
,本文编号:1589139
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1589139.html