当前位置:主页 > 科技论文 > 建筑工程论文 >

地热用供暖换热系统关键技术研究

发布时间:2018-03-20 17:23

  本文选题:干热岩 切入点:供暖 出处:《沈阳工业大学》2017年硕士论文 论文类型:学位论文


【摘要】:随着当代社会对能源的依赖逐渐增长,化石类能源日渐枯竭,人们对生存环境条件的标准日益提高,地热能这一绿色新型清洁能源的开发已经受到发达国家的高度重视。近年来特别是针对地下干热岩资源的开发项目早己在很多发达国家的积极研究当中,但干热岩资源的开发应用在全球范围内也尚是起步阶段,对我国而言,更是处于理论阶段。东北地区的供暖条件是一个永恒的话题,以往传统的以化石燃料为主的供暖方式不符合可持续发展的战略布局,本文借鉴了国内外相关文献,结合国内外干热岩开发案例,基于干热岩资源的开采优势,以沈阳地区为例,研究开发干热岩资源冬季供暖的可实施性和优势,形成利用干热岩资源供暖的方案和系统模拟结构,将若干口注入井对接到一口输出井上,循环水在井内流动换取干热岩热量,送达地面实现供暖。研究表明干热岩资源供暖过程中的核心技术包括岩石的导热性能及岩石和水的热交换能力、井管尺寸及结构是实现干热岩供暖的重要前提,同时温泉水属于地下热能的一部分,显然提取温泉水的热量相对更加经济、方便,但是地下温泉水不被允许大量开采,如何高效的换取地下温泉水的热量也是本文所研究的内容,可以采用将换热器下放到温泉中的方式进行换热,所以需要对换热器的结构进行设计,本文针对地下温泉的特殊性设计了一种新型波纹管换热器,考虑到地下的高压以及内外的温度差,因此对换热器进行载荷以及温差变形校验,并通过有限元数值模拟对干热岩及换热器进行了热交换及压降分析,分别研究了在不同的流速及地温梯度下水被加热到一定值时对所需要井深和压降的影响以及在不同的结构下水被加热到相同温度时对所需波纹管长的影响,并对换热量进行了计算,最后对整个干热岩换热系统进行了经济性分析,整个系统的前期投入会较大,但是长期运行起来将受益巨大。研究表明,若以上干热岩供暖关键问题得到更合理更科学的的设计和研究,那么在利用地热能源对东北地区进行供暖方面将取得技术上的巨大突破。
[Abstract]:With the increasing dependence on energy and the depletion of fossil energy in contemporary society, the standard of living environment is becoming higher and higher. The development of geothermal energy, a new green and clean energy, has been highly valued by developed countries. In recent years, especially the development projects for underground dry hot rock resources have long been actively studied in many developed countries. But the exploitation and application of dry-hot rock resources in the whole world is still at the beginning stage, and for our country, it is also in the theoretical stage. The heating condition in Northeast China is an eternal topic. The traditional heating mode based on fossil fuel is not in line with the strategic layout of sustainable development in the past. This paper draws lessons from relevant literature at home and abroad and combines the case of dry hot rock development at home and abroad, based on the exploitation advantages of dry hot rock resources. Taking Shenyang area as an example, the practicability and advantage of developing dry hot rock resource heating in winter are studied, and the scheme and system simulation structure of heating using dry hot rock resource are formed, and several injection wells are connected to an output well. Circulating water flows in wells in exchange for heat from dry hot rock and reaches the ground for heating. The research shows that the core technology in the heating process of dry hot rock resources includes the thermal conductivity of rock and the heat exchange capacity of rock and water. The size and structure of the well pipe is an important prerequisite for the dry-hot rock heating. At the same time, the hot spring water is part of the underground heat energy. Obviously, it is more economical and convenient to extract the heat from the hot spring water, but the underground hot spring water is not allowed to be exploited in large quantities. How to exchange the heat of underground hot spring water efficiently is also the content of this paper. The heat exchanger can be transferred to the hot spring, so it is necessary to design the structure of the heat exchanger. In this paper, a new type of bellows heat exchanger is designed according to the particularity of underground hot spring. Considering the high pressure of underground and the difference of temperature inside and outside, the load and temperature difference deformation of heat exchanger are checked. The heat exchange and pressure drop of dry hot rock and heat exchanger are analyzed by finite element numerical simulation. The effects of different velocity of water and geothermal gradient on the required well depth and pressure drop when heated to a certain value and on the required bellows length when the water of different structures are heated to the same temperature are studied respectively. The heat transfer is calculated. Finally, the economic analysis of the whole dry hot rock heat transfer system is carried out. The early investment of the whole system will be large, but the long-term operation will benefit a great deal. If the above key problems of dry-hot rock heating are designed and studied more reasonably and scientifically, a great breakthrough will be made in the use of geothermal energy to heat heating in Northeast China.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU832

【相似文献】

相关期刊论文 前6条

1 柳青;;潜能巨大的清洁能源——干热岩[J];地球;2008年03期

2 彭新明;;我国干热岩地热资源钻采工艺浅议[J];探矿工程(岩土钻掘工程);2009年S1期

3 许天福;张延军;曾昭发;鲍新华;;增强型地热系统(干热岩)开发技术进展[J];科技导报;2012年32期

4 陈继良;蒋方明;;增强型地热系统热开采过程的数值模拟研究[J];新能源进展;2013年02期

5 李川;王时龙;张贤明;康玲;;干热岩在地热发电中的应用[J];热力发电;2008年11期

6 ;[J];;年期

相关会议论文 前3条

1 徐巍;;世界干热岩发展现状及趋势[A];中国地热资源开发与保护——全国地热资源开发利用与保护考察研讨会论文集[C];2007年

2 徐琼辉;马伟斌;陈琦;龚宇烈;;深层干热岩温度场与孔隙率关系研究[A];中国地球物理学会第二十七届年会论文集[C];2011年

3 杨峰田;段忠丰;庞忠和;;干热岩地热资源潜力评价方法探讨——以苏北盆地建湖隆起区为例[A];中国地球物理学会第二十七届年会论文集[C];2011年

相关重要报纸文章 前3条

1 本报记者 于德福;干热岩,尚在沉睡的宝贝[N];地质勘查导报;2010年

2 本报记者 赵京燕;干热岩地热资源利用前景无限[N];中国矿业报;2008年

3 辛力;干热岩能成为新能源增长点吗[N];北京日报;2014年

相关硕士学位论文 前6条

1 张杨;干热岩形成机理及开发潜力研究[D];长安大学;2016年

2 张正;基于FLUENT的干热岩热交换方式比较分析[D];沈阳建筑大学;2015年

3 魏崇山;地热用供暖换热系统关键技术研究[D];沈阳工业大学;2017年

4 冯晓燕;沈阳地区利用干热岩资源供暖技术研究[D];沈阳建筑大学;2012年

5 赵锟;沈阳地区干热岩储留层裂隙温度分布研究[D];沈阳建筑大学;2013年

6 孟洁;Kalina循环在干热岩发电中的应用研究[D];华北电力大学;2014年



本文编号:1640072

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1640072.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4e64f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com