钢板仓结构设计及有限元分析
本文选题:钢板仓 切入点:结构设计 出处:《烟台大学》2017年硕士论文
【摘要】:钢板仓的设计理念在于解决大量粉粒料等的贮存问题,该设计解决了大直径落地库边部存料多、出库率低、均化效果差及库内设备无法维修更换的技术难题。同时钢板仓具有储量大、投资省、建设速度快、出库率高、均化性能好、库内设备更换维修方便、能源消耗小、运转安全可靠、可实现自动化控制、使用寿命长等突出优点。但是作为一个新兴的行业,钢板仓在发展过程中还缺乏系统的管理理念及相应的国家规范。本文基于内蒙古宏江集团10个5万立方米粉煤灰钢板仓群、山西太钢集团10万立方米粉煤灰项目、神华国华4个5万立方米粉煤灰项目等具体钢板仓施工工程实例,并根据钢板仓工程的设计与施工中存在的问题,重点研究了以下内容:(1)环保是评价钢板仓结构设计好坏的一个重要指标。在设计中考虑了钢板仓和自然环境之间关系,通过对钢板仓结构的环保设计,提升建筑品质。在钢板仓结构中采用轻质板材等材料,以解决能源紧缺的现象。针对设计钢板仓存在的加劲肋薄弱和材料性能浪费问题,提出应采用提高部分加劲肋钢材标号、采用变截面加劲肋等设计方法。(2)建立了某钢板仓实际工程的有限元分析模型,并分析了钢板仓各构件的应力和变形,解释了最大应力和变形出现的原因,并针对最大应力和变形给出了优化设计建议。通过优化设计,在充分考虑建筑经济的前提下,提升钢板仓结构总体协调性,防止出现失稳或者坍塌的现象。(3)运用有限元的方法,对比分析了不同几何尺寸和不同材料属性的加劲肋对钢板仓结构特性的影响。(1)纵向加劲肋的存在可以大幅度的减小钢板仓壁与基础接触位置应力以及最大应力值的大小;(2)布置纵向加劲肋可以减少钢板仓壁的应力震荡,使得钢板仓壁的应力平稳下降,减少因应力变化引起的疲劳;(3)环向加劲肋可以减小最大应力值和下降段应力值。
[Abstract]:The design concept of the steel plate warehouse is to solve the storage problem of a large number of powder particles. The design solves the technical problems of large diameter landing storehouse, such as more materials stored on the side, low discharge rate, poor homogenization effect, and the equipment in the storehouse can not be maintained and replaced.At the same time, the steel plate warehouse has the advantages of large reserves, low investment, high construction speed, high outputting rate, good homogenization performance, convenient replacement and maintenance of equipment in the warehouse, small energy consumption, safe and reliable operation, automatic control, long service life, and so on.However, as a new industry, steel warehouse still lacks systematic management concept and corresponding national standards in the process of development.This paper is based on the construction examples of 10 50, 000 cubic meters of fly ash steel silo of Inner Mongolia Hongjiang Group, 100000 cubic meters of fly ash of Shanxi Taiyuan Iron and Steel Group, and 4 50, 000 cubic meters of fly ash of Shenhua.According to the problems existing in the design and construction of steel silo, the following contents: 1: 1) Environmental protection is an important index to evaluate the structural design of steel silo.The relationship between the steel silo and the natural environment is considered in the design, and the building quality is improved by the environmental protection design of the steel silo structure.In order to solve the problem of energy shortage, light plate and other materials are used in steel silo structure.In view of the weakness of stiffening ribs and the waste of material properties in designing steel silo, it is put forward that the finite element analysis model of a steel silo should be established by improving the steel label of partially stiffened ribbed steel and adopting the design method of variable section stiffening rib etc. (2) the finite element analysis model of the actual engineering of a steel silo is established.The stress and deformation of the components of the steel bin are analyzed, the causes of the maximum stress and deformation are explained, and the optimal design suggestions for the maximum stress and deformation are given.Through the optimization design, under the premise of fully considering the building economy, the overall coordination of the steel silo structure is promoted to prevent the phenomenon of instability or collapse. The finite element method is used.The influence of stiffener with different geometric size and different material properties on the structural characteristics of steel silo is analyzed. (1) the existence of longitudinal stiffener can greatly reduce the contact position stress and maximum stress value between the steel silo wall and foundation.The longitudinal stiffening rib can reduce the stress oscillation of the steel silo wall.The stress of the steel silo wall decreases steadily and the fatigue caused by the stress change is reduced. The maximum stress value and the stress value of the descending section can be reduced by the ring stiffening rib.
【学位授予单位】:烟台大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU391
【参考文献】
相关期刊论文 前10条
1 刘殿忠;陈阳;;钢结构住宅的发展现状及展望[J];四川建材;2016年04期
2 宋红领;段君峰;薛晨曦;;粮食钢板仓技术状况及设计建议[J];现代食品;2016年12期
3 刘瑞兵;张建华;王启宇;;钢板筒仓的有限元分析[J];内蒙古师范大学学报(自然科学汉文版);2016年02期
4 刘振华;付迎娟;王涛;张震;;大型落地式钢板仓地震作用分析[J];山西建筑;2016年01期
5 姜伟;;建筑钢结构设计现状及存在问题研究[J];门窗;2015年04期
6 严仁章;陈志华;王小盾;;大型焊接储煤钢板仓的结构设计和稳定性分析[J];工业建筑;2014年10期
7 张建华;郜殿伟;黄珂;徐颀;刘新生;;基于SAP2000的钢板筒仓参数化建模与分析[J];建筑科学与工程学报;2013年03期
8 陈通跃;曹庆帅;王建群;宋靖;吴灵宇;;大直径水泥熟料钢板筒仓稳定性分析[J];空间结构;2013年02期
9 崔元瑞;王周慧;;筒仓结构的温度应力[J];特种结构;2012年01期
10 陈新杰;赖海斌;王习国;;钢板筒仓结构稳定承载力研究现状[J];江苏建筑;2011年05期
相关会议论文 前1条
1 张义昆;;大型落地式钢筒仓结构破坏模式、原因分析及措施[A];2016年第五届热电联产与煤电深度节能新技术研讨会论文集[C];2016年
相关硕士学位论文 前5条
1 陈强;大型工业钢板筒仓的优化设计分析研究[D];天津大学;2014年
2 郭红伟;大型落地式钢筒仓温度作用有限元分析[D];山东大学;2013年
3 杨鸿;钢筒仓静动态散料压力的数值模拟[D];浙江大学;2010年
4 高金锁;落地式钢筒仓地震作用分析[D];西安建筑科技大学;2009年
5 顾建;落地式钢板筒仓承载能力分析研究[D];东南大学;2006年
,本文编号:1729273
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1729273.html