胶圈接口管道与土摩擦及滑动特性研究
本文选题:球墨铸铁管道 + 土弹簧模型 ; 参考:《河南工业大学》2017年硕士论文
【摘要】:胶圈接口球墨铸铁管道在城市基础设施建设中有着广泛的应用,是城市管网的重要组成部分。地震等地质灾害会造成埋地管道的严重破坏,管土轴向摩阻力是埋地管道抗震设计中的重要参数,对于沿管道方向的位移传递系数影响较大。鉴于此,本课题从地面剪切波作用下埋地管道的受力情况出发,设计了相关试验项目。试验主要包括三部分。一部分是覆土条件下,胶圈接口管道试验。在该过程中首先固定承口管道,进行了轴向拉推插口管道的加载试验;然后解除承口端固结约束,进行了轴向拉推插口管道的加载试验。第二部分是覆土条件下,分别对插口管道和承口管道进行了轴向加载试验。试验过程中,通过改变埋深、埋长、加载速率等因素研究了影响管土轴向摩阻力的重要因素。第三部分是不覆土条件下,对胶圈接口管道进行轴向加载试验。通过试验研究得出管土轴向阻力与管道埋深、加载速率成正相关关系,与埋长呈近似线性关系。加载初始阶段,管道的力和位移曲线呈线弹性变化趋势,此后加载阶段,对于承口管道,管道的力和位移曲线斜率减小,摩阻力仍呈递增趋势,且无峰值出现;对于插口管道,摩阻力达到峰值后,呈递减趋势。通过数值模型分析得出土体重度、埋深、管径、管土间摩擦系数是影响数值分析结果的重要参数。且这些参数与管土间轴向摩阻力呈正相关。管道轴向应力沿荷载作用方向呈依次增大趋势。通过理论公式计算、试验结果、数值分析结果三者的对比发现,理论结算结果和数值分析结果较为接近,相较于试验结果偏小。本文基于管-土相对变形理论,通过理论公式计算、试验研究、数值模型分析三种研究方法较为系统地分析研究了胶圈接口管道胶圈力学性能及管土轴向摩阻力的问题,并得出了相应结论,对于管道抗震设计具有一定参考意义。
[Abstract]:The ductile iron pipe with rubber ring interface is widely used in urban infrastructure construction and is an important part of urban pipe network. Earthquake and other geological disasters will cause serious damage to buried pipelines. The axial friction of pipe and soil is an important parameter in seismic design of buried pipelines, which has a great influence on the displacement transfer coefficient along the pipeline direction. In view of this, based on the stress of buried pipeline under the action of surface shear wave, the related test items are designed. The experiment consists of three parts. Part of the test is under the condition of overlying soil, the test of the sealing joint pipe. In the process, the bearing pipe is first fixed, and the loading test of the axial pull push pipe is carried out, and then the consolidation constraint at the end of the bearing is released, and the loading test of the axial pull push socket pipe is carried out. The second part is the axial loading test of the socket pipe and the socket pipe under the condition of soil overburden. In the course of the experiment, the important factors affecting the axial friction of the pipe and soil were studied by changing the depth of buried, the length of the buried and the loading rate. The third part is the axial loading test of the apron connection pipe without soil overburden. The experimental results show that the axial resistance of pipe-soil has a positive correlation with the buried depth and loading rate of the pipeline, and an approximate linear relationship with the buried length. At the initial stage of loading, the force and displacement curves of the pipeline show a linear elastic change trend, then, in the loading stage, the slope of the force and displacement curve of the pipeline decreases, the friction resistance of the pipeline is still increasing, and there is no peak value; for the pipe with the socket, the slope of the force and displacement curve of the pipeline decreases, and no peak value appears. When the friction reaches the peak value, it tends to decrease. Through the numerical model analysis, it is concluded that the soil weight, buried depth, pipe diameter and friction coefficient between pipes and soils are the important parameters that affect the results of numerical analysis. These parameters are positively correlated with the axial friction between pipe and soil. The axial stress of pipeline increases in turn along the direction of load. Through theoretical formula calculation, experimental results and numerical analysis results, it is found that the theoretical results and the numerical results are close to each other, which is smaller than that of the experimental results. Based on the theory of the relative deformation of pipe and soil, the mechanical properties and axial friction of the pipe and soil in the pipeline are studied systematically by three research methods, namely, theoretical formula calculation, experimental study and numerical model analysis. The corresponding conclusions are obtained, which have certain reference significance for the seismic design of pipelines.
【学位授予单位】:河南工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU990.3
【参考文献】
相关期刊论文 前8条
1 薛娜;李鸿晶;李秀菊;金浏;翟聚云;;穿越正断层埋地管线的破坏模式分析[J];重庆大学学报;2016年02期
2 叶朝良;高新强;宋鹤;;玻璃钢夹砂管管土摩擦系数室内模型试验研究[J];石家庄铁道大学学报(自然科学版);2015年03期
3 陈春光;杨庆华;孔杰;刘志文;侯翠婷;;管-土相互作用的试验研究[J];特种结构;2012年02期
4 刘润;闫澍旺;王洪播;张军;徐余;;砂土对埋设管线约束作用的模型试验研究[J];岩土工程学报;2011年04期
5 李杰;;生命线工程的研究进展与发展趋势[J];土木工程学报;2006年01期
6 韩扬,孙绍平;地下管道抗震分析中的若干参数[J];特种结构;1999年03期
7 王位升;我国埋地式砼管外荷载计算的现状及对比分析[J];混凝土与水泥制品;1994年01期
8 卢明良;王锡田;;埋地热力管道摩擦力试验研究[J];特种结构;1991年02期
相关博士学位论文 前3条
1 佘艳华;机械冲击荷载对邻近埋地管道的影响及控制研究[D];中国工程物理研究院;2012年
2 周静海;地下供水管线破坏试验及抗震分析[D];大连理工大学;2010年
3 韩阳;城市地下管网系统的地震可靠性研究[D];大连理工大学;2002年
相关硕士学位论文 前5条
1 包钢;新兴公司球墨铸铁管国内营销策略研究[D];哈尔滨工业大学;2014年
2 孙中菊;地面堆载作用下埋地管道的力学性状分析[D];浙江大学;2014年
3 陈勇;埋地管道在地震波作用下的变形研究[D];西南交通大学;2013年
4 王洪播;海底管线水平向屈曲过程中管土相互作用研究[D];天津大学;2010年
5 黄吉龙;大口径玻璃钢夹砂顶管室内试验与数值分析[D];上海交通大学;2007年
,本文编号:1833845
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1833845.html