当前位置:主页 > 科技论文 > 建筑工程论文 >

开缝耗能组合墙的抗震性能研究

发布时间:2018-05-31 22:43

  本文选题:开缝耗能组合墙 + 软钢耗能器 ; 参考:《广州大学》2017年硕士论文


【摘要】:剪力墙尤其是核心筒剪力墙作为(超)高层建筑的主要抗侧力和承重构件,由于高宽比较小,破坏形式往往为脆性的剪切破坏,地震作用下剪力墙底部损伤严重,震后修复极其困难,修复费用昂贵。因此,有必要对高宽比较小的剪力墙进行改善,控制剪力墙的损伤,解决高宽比较小的剪力墙以剪切破坏为主,延性差以及灾后难修复的问题。本文综合利用学者们关于改善剪力墙的研究思路,提出一种新型的开缝耗能组合墙:在高宽比较小的剪力墙中部设置竖缝,使得墙肢高宽比增大的同时,剪力墙破坏形态由剪切破坏转变为弯曲破坏;在墙体两端设置性能更优越的钢管混凝土边缘构件来解决开缝带来的刚度与强度下降问题;在缝中设置分离式的软钢耗能器耗散地震能量,解决剪力墙在地震作用下遭受过多损伤与破坏的问题,同时分离式的耗能器布置有利于震后快速更换,可以解决震后修复难的问题。本文分别从构件与结构两个层次上研究开缝耗能组合墙的抗震性能,从承载力、变形能力与破坏形式等方面对开缝耗能组合墙构件进行研究,从顶点位移、基底剪力、层间位移角、核心筒材料损伤以及地震能量耗散等方面对开缝耗能组合墙结构进行研究,最后为了全面了解开缝耗能组合墙结构在地震动随机性下表现出来的抗震性能,选取了 100条地震动记录,对开缝耗能组合墙结构进行地震易损性分析,从概率的方面来评估结构的抗震性能。本文主要的研究工作与结论有以下几个方面:(1)首先,针对地震作用下开缝剪力墙的力学特性,提出带分离式软钢耗能器的组合剪力墙,并从构件角度研究开缝耗能组合墙的抗震性能。从承载力、变形能力、耗能能力与破坏形式等方面对开缝耗能组合墙与低矮剪力墙抗震性能进行对比分析。结果显示,开缝耗能组合墙的峰值荷载比低矮剪力墙提高了 2.2%,极限位移为低矮剪力墙的3.23倍,延性为低矮剪力墙的2.16倍,耗能系数为低矮剪力墙的1.91倍;开缝耗能组合墙破坏形态为趋于延性的弯曲破坏,不同于低矮剪力墙的剪切破坏。(2)为研究带分离式金属耗能器的组合剪力墙在整体结构中的抗震性能,以一栋超高层建筑结构为对象,研究开缝耗能组合墙结构的抗震性能。采用开缝耗能组合墙替换部分原剪力墙,并从顶点位移、基底剪力、层间位移角、核心筒材料损伤、地震动能量消耗以及构件耗能分布情况等方面来开展两个结构的抗震性能对比研究。结果表明,在8度(0.2g)罕遇地震作用下,开缝耗能组合墙结构与原结构相比,在顶点位移、基底剪力与层间位移角上并没有下降;核心筒构件的材料损伤情况有了明显的改善,核心筒混凝土受压严重损伤的数量下降100%,混凝土受压中度损伤的数量下降83%,钢筋受拉中度损伤的数量下降82%;滞回耗能集中于核心筒底部的情况有所改善,核心筒底层剪力墙滞回耗能下降40%左右。同时为了研究墙体关键参数开缝数量对整体结构的影响,从上述几个方面对开缝数量不同的开缝耗能组合墙结构进行了抗震性能的对比分析,结果显示,分缝数量为2的开缝组合墙结构比分缝数量为1的相比,核心筒混凝土受压严重损伤与钢筋受拉中度损伤的数量都有所下降,核心筒底层剪力墙滞回耗能下降18%左右,说明分缝数量为2的开缝组合墙结构的抗震性能更加优越。(3)为探讨开缝耗能组合墙结构在地震作用下发生各级破坏的概率,对原结构与开缝耗能组合墙结构分别进行以PGV (地面峰值速度)与PGA (地面峰值加速度)为地震动强度参数的地震易损性分析。结果显示,在8度(0.2g)罕遇地震作用下,以PGV为地震动强度参数的地震易损性分析中,开缝耗能组合墙结构在轻微损伤、中度损伤、严重损伤三个极限状态下的超越概率比原结构分别下降了 9.22%、65.24%、84.59%;以PGA为地震动强度参数的地震易损性分析中,开缝耗能组合墙结构在轻微损伤、中度损伤、严重损伤三个极限状态下的超越概率比原结构分别下降了 5.1%、23.45%、50.22%;说明开缝耗能组合墙结构在地震动随机性下的抗震性能比原结构更加优越。
[Abstract]:The shear wall, especially the core wall shear wall, is the main anti lateral force and bearing member of the high rise building. Because of the small height and width, the failure form is often brittle shear failure. The bottom of the shear wall is seriously damaged by the earthquake. It is extremely difficult to repair the shear wall after the earthquake, and the repair cost is expensive. Therefore, it is necessary to carry out the shear wall with relatively small height and width. To improve the damage of shear walls and to solve the problem of shear failure of shear walls with smaller width and width, and the problem of difficult to repair after the disaster. In this paper, a new type of combined wall with slit energy dissipation is proposed by the comprehensive use of scholars to improve the shear wall: a vertical joint is set up in the middle of the shear wall with relatively small height and width, so that the height of the wall is high. While the width ratio increases, the failure mode of shear wall is transformed from shear failure to bending failure, and a more superior performance steel tube concrete edge member is set at both ends of the wall to solve the problem of stiffness and strength reduction caused by the slit, and the dissipative seismic energy of the separate type soft steel energy dissipator is set up in the seams to solve the shear wall subjected to earthquake action. At the same time, the separation type energy dissipator arrangement is beneficial to the rapid replacement of the earthquake after the earthquake, which can solve the difficult problem of post earthquake repair. In this paper, the seismic performance of the combined wall with slit energy consumption is studied from two levels of components and structures. On the basis of the study, the structure of the composite wall with slit energy dissipation is studied from the aspects of the vertex displacement, the base shear, the interlayer displacement angle, the material damage of the core tube and the dissipation of the earthquake energy. Finally, 100 ground motion records are selected for the comprehensive understanding of the earthquake resistance performance of the structure of the composite wall with the slit energy dissipation under the random ground motion. In this paper, the main research work and conclusion of this paper are as follows: (1) firstly, in view of the mechanical characteristics of the slit shear walls under the action of the earthquake, a composite shear wall with a separate soft steel energy absorber is proposed, and the joint is studied from the angle of the component. The seismic performance of the combined wall with energy dissipation is compared and analyzed from the bearing capacity, the deformation capacity, the energy dissipation capacity and the failure mode. The results show that the peak load of the combined wall with the slit energy consumption is 2.2% higher than the low shear wall, and the ultimate displacement is 3.23 times of the low shear wall, and the ductility is the ductility. The energy dissipation factor is 2.16 times of the low shear wall, and the energy dissipation factor is 1.91 times of the low shear wall, and the failure mode of the composite wall with the slit energy dissipation is different from the shear failure of the low shear wall. (2) the seismic performance of the composite shear wall with the separation type metal energy dissipator in the whole structure is used as a super high rise building structure. The seismic performance of the composite wall structure with slit energy dissipation is studied. The seismic performance of the two structures is compared with the displacement of the wall, the base shear, the interlayer displacement angle, the material damage of the core, the energy consumption of the ground motion and the distribution of energy consumption of the components. Under the action of 8 degree (0.2g) rare earthquake, the structure of the combined wall with slit energy dissipation has not decreased on the vertex displacement, the base shear force and the interlayer displacement angle, and the material damage of the core tube components has been obviously improved, the number of the serious damage to the concrete compression of the core tube is reduced by 100%, and the amount of the concrete under the moderate damage is under the amount of moderate damage. At 83%, the number of medium damage of steel bar is reduced by 82%, the situation of hysteretic energy concentrating on the bottom of core tube is improved, and the hysteretic energy of the bottom shear wall of core tube is reduced by about 40%. In order to study the influence of the number of key parameters on the whole structure of the wall, the energy dissipation composite wall with different slit number is different from the above aspects. Compared with the seismic performance of the structure, the results show that compared with the number of seams with the number of 2 seams, the number of serious damage to concrete under the core tube and the moderate damage to the reinforcement in the core tube decreased, and the hysteresis energy of the bottom shear wall of the core tube decreased by about 18%, indicating the slit group with the number of seams of 2. The seismic performance of the composite wall structure is more superior. (3) in order to discuss the probability of damage at all levels under the earthquake action, the seismic vulnerability analysis of the original structure and the joint energy dissipating wall structure with the PGV (ground peak velocity) and the PGA (ground peak acceleration) as the ground motion intensity parameters are analyzed. The results show that Under the action of 8 degree (0.2g) rare earthquake, in the seismic vulnerability analysis of PGV as ground motion intensity parameters, the transcendental probability of the joint energy dissipation wall structure under three limit states of slight damage, moderate damage and serious damage decreased by 9.22%, 65.24%, 84.59%, respectively, and the seismic vulnerability analysis with PGA as the ground motion intensity parameters In the three limit states, the surpassing probability of the combined wall with slit energy dissipation is 5.1%, 23.45%, and 50.22%, respectively, under the three limit states, which shows that the seismic performance of the combined wall structure with the slit energy dissipation is superior to the original structure.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU973.17;TU973.31

【参考文献】

相关期刊论文 前10条

1 赵作周;贺小岗;杨光;叶列平;;高轴压比下钢管高强混凝土组合剪力墙抗震性能试验研究[J];建筑结构学报;2016年09期

2 王朋;史庆轩;王峰;王秋维;郑晓龙;王斌;;罕遇地震作用下型钢混凝土框架-钢筋混凝土核心筒结构耗能及损伤模式研究[J];工业建筑;2015年08期

3 李梦珂;卢啸;陆新征;叶列平;;中美高层钢筋混凝土框架-核心筒结构抗震设计对比[J];工程力学;2015年06期

4 袁新禧;郑杰;李爱群;潘志宏;;带竖缝及金属阻尼器混凝土剪力墙抗震性能试验研究[J];工程抗震与加固改造;2014年06期

5 袁新禧;潘志宏;李爱群;郑杰;周德恒;;带竖缝及金属阻尼器混凝土剪力墙抗震性能研究[J];土木工程学报;2014年S1期

6 杨光;赵作周;钱稼茹;刘旭;;新型钢管混凝土组合剪力墙抗震性能试验研究[J];建筑结构;2014年07期

7 罗志国;黄宗芳;魏作伟;张莉华;严开涛;;矩形钢管混凝土端柱-混凝土剪力墙组合墙体力学性能研究[J];建筑结构;2013年11期

8 方小丹;蒋标;韦宏;周越洲;江毅;赖洪涛;;钢管高强混凝土剪力墙轴心受压试验研究[J];建筑结构学报;2013年03期

9 聂建国;胡红松;李盛勇;刘付钧;樊健生;陶慕轩;邵大成;喻德明;;方钢管混凝土暗柱内嵌钢板-混凝土组合剪力墙抗震性能试验研究[J];建筑结构学报;2013年01期

10 吕西林;苏宁粉;周颖;;复杂高层结构基于增量动力分析法的地震易损性分析[J];地震工程与工程振动;2012年05期

相关博士学位论文 前1条

1 米旭峰;支撑框架与竖缝剪力墙抗震设计研究[D];浙江大学;2007年

相关硕士学位论文 前10条

1 袁新禧;带竖缝及金属阻尼器的混凝土剪力墙抗震性能试验研究[D];江苏科技大学;2015年

2 杨光;高轴压比钢管混凝土组合剪力墙抗震性能研究[D];清华大学;2013年

3 李沣泰;高层建筑框架—核心筒混合结构地震能量反应及损伤评估[D];西安建筑科技大学;2013年

4 李青;钢管高强混凝土剪力墙压弯性能试验研究[D];华南理工大学;2012年

5 宋文山;带竖缝剪力墙板的非线性有限元分析及恢复力模型研究[D];天津大学;2009年

6 于晓辉;钢筋混凝土框架结构的整体概率抗震能力分析[D];哈尔滨工业大学;2007年

7 潘峰;钢筋混凝土框架结构的整体概率地震需求分析[D];哈尔滨工业大学;2007年

8 玉军;钢筋混凝土高层建筑结构抗震弹塑性分析方法的研究及其应用[D];湖南大学;2007年

9 孙文林;基于性能的钢框架结构非线性地震反应分析[D];湖南大学;2006年

10 王刚;带缝空心R.C.剪力墙结构试验研究[D];西安建筑科技大学;2005年



本文编号:1961628

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/1961628.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户09075***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com