当前位置:主页 > 科技论文 > 建筑工程论文 >

基于蓄热型太阳能热泵的LPG气化系统研究

发布时间:2018-07-10 14:07

  本文选题:太阳能热泵 + 相变蓄热 ; 参考:《华北电力大学》2017年硕士论文


【摘要】:随着能源消耗日益增加和环境污染问题日益严峻,可再生能源和清洁能源的利用变得尤为重要。为了达到减少电能消耗的目的,本文提出了一种蓄热型太阳能热泵液化石油气(LPG)气化(Regenerative Direct Expansion Solar Assisted Heat Pump Vaporization,RDX-SAHPV)系统,并对该系统进行了动态仿真模拟和理论研究。首先,本文在整理国内外有关相变蓄热研究文献的基础上,从相变材料、蓄热周期、装置结构以及蓄热容量四方面出发,为RDX-SAHPV系统设计了一套相变蓄热装置。通过Fluent模拟软件中的熔化/凝固模型对不同半径的蓄热球体进行模拟,得出半径为60mm的蓄热球体蓄/放热时间比较合理、便于加工且蓄热球壳不会占用蓄热水箱过多的蓄热体积。此外,通过计算相变蓄热装置不同蓄热容量下的年投资成本和年运行成本,得出蓄热装置蓄热容量为40MJ时回收期最低。其次,文中提出并设计了RDX-SAHPV系统,介绍了该系统的工作原理,分析了系统的运行条件及控制策略,并且详细研究了系统的十四种运行模式,得出该系统可根据气象条件和用气负荷的变化,选择最佳的运行模式。最后,建立了RDX-SAHPV系统的动态仿真模型,包括DX-SAHP模型、蓄热水箱和相变蓄热水箱模型、气化器模型、辅助热源模型和装置内PCM的计算模型。其中,DX-SAHP系统模型采用集总参数法,相变蓄热模型采用有限体积法。在建立了RDX-SAHPV系统数学模型的基础上,以北京某1000户居民的住宅小区为供气对象,采用Matlab软件对RDX-SAHPV系统进行动态仿真模拟,得出系统全年的运行情况,并对系统全年的运行特性进行深入的理论研究。通过对模拟结果进行分析,得出RDX-SAHPV系统全年具有较高的供热性能,冬季最低的COP能达到2.76,夏季最高的COP能达到3.42,年平均COP为3.12。此外,RDX-SAHPV系统中相变蓄热水箱的设置使DX-SAHP的工作时间延长了11.6%,DX-SAHP的耗电量增加了532k Wh,辅助热源的耗电量减少了1694k Wh,每年节省的电能约为1162k Wh,电能消耗减少了14%,提高了系统的经济性和环保性。
[Abstract]:With the increasing of energy consumption and environmental pollution, the utilization of renewable energy and clean energy becomes more and more important. In order to reduce power consumption, a regenerative direct expansion solar Assisted heat pump Vaporization- RDX-SAHPV system is proposed in this paper, and the dynamic simulation and theoretical study of the system are carried out. First of all, based on the literature about phase change heat storage at home and abroad, this paper designs a phase change heat storage device for RDX-SAHPV system from four aspects: phase change material, heat storage period, device structure and heat storage capacity. By using the melting / solidification model in fluent simulation software, the heat storage sphere with different radius is simulated. It is concluded that the storage / exothermic time of the regenerative sphere with radius 60mm is reasonable. Easy to process and heat storage spherical shell does not take up too much heat storage tank volume. In addition, by calculating the annual investment cost and annual operating cost of the phase change heat storage unit under different storage capacity, it is concluded that the recovery period is the lowest when the heat storage capacity of the device is 40 MJ. Secondly, the RDX-SAHPV system is proposed and designed, the working principle of the system is introduced, the operating conditions and control strategies of the system are analyzed, and the 14 operation modes of the system are studied in detail. It is concluded that the system can select the best operation mode according to the change of meteorological conditions and gas load. Finally, the dynamic simulation model of RDX-SAHPV system is established, including DX-SAHP model, storage tank model and phase change storage tank model, gasifier model, auxiliary heat source model and PCM calculation model. The lumped parameter method is used in the DX-SAHP system model and the finite volume method is used in the phase change heat storage model. On the basis of establishing the mathematical model of RDX-SAHPV system, taking the residential district of 1000 residents in Beijing as the gas supply object, the dynamic simulation of RDX-SAHPV system is carried out by using Matlab software, and the running situation of the system throughout the year is obtained. And the operating characteristics of the system throughout the year in-depth theoretical research. By analyzing the simulation results, it is concluded that the RDX-SAHPV system has high heating performance in the whole year, the lowest cop in winter is 2.76, the highest cop in summer is 3.42, and the annual average cop is 3.12. In addition, the installation of phase change storage tank in RDX-SAHPV system prolongs the working time of DX-SAHP by increasing the power consumption of DX-SAHP by 532 kWh. the power consumption of auxiliary heat source decreases by 1694kWh. the annual energy saving is about 1162kWh. The economy and environmental protection of the system.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU83

【参考文献】

相关期刊论文 前10条

1 崔海亭;周慧涛;蒋静智;;用于储存太阳能的相变蓄热器蓄热性能研究[J];可再生能源;2013年12期

2 蔡庆文;刘军;;我国液化石油气的供需现状及发展趋势[J];石油规划设计;2011年03期

3 於慧姝;陆春林;金苏敏;;热泵热水器蓄热水箱的漏热损失分析[J];流体机械;2010年11期

4 何燕;陈鲁;林艳;张江辉;马连湘;;带有蓄热装置的直膨式太阳能热泵系统性能分析[J];太原理工大学学报;2010年05期

5 崔海亭;王振辉;郭彦书;彭培英;胡禄;;圆柱形相变蓄热器蓄/放热性能实验研究[J];太阳能学报;2009年10期

6 李新国;李伟;郭英利;;圆管外石蜡相变蓄热与释热实验研究[J];工程热物理学报;2009年07期

7 吴薇;刘兆亮;陈磊;程清;赵亮;;一种蓄能型一体化太阳能热泵热水器性能分析[J];南京师范大学学报(工程技术版);2009年01期

8 王福强;陈敬民;;空温式气化器在LPG气化站的应用[J];煤气与热力;2008年07期

9 罗东晓;;国内液化石油气市场前景分析[J];天然气工业;2007年10期

10 姜益强;齐琦;姚杨;马最良;;太阳能季节性相变蓄热热泵系统在哈尔滨应用的模拟研究[J];暖通空调;2007年03期

相关博士学位论文 前3条

1 时国华;基于太阳能热泵的LPG气化系统研究[D];华北电力大学;2015年

2 韩宗伟;太阳能热泵潜热蓄热供暖系统性能研究[D];哈尔滨工业大学;2008年

3 李郁武;直膨式太阳能热泵热水装置的优化分析与变容量运行研究[D];上海交通大学;2007年

相关硕士学位论文 前1条

1 时国华;中小城镇非管输气化途径的研究[D];华北电力大学(河北);2005年



本文编号:2113613

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2113613.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0302d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com