基于振动台试验开展砂土液化的机理与判别研究
[Abstract]:Sand liquefaction is an important research subject in geotechnical engineering. The liquefaction of sand caused by dynamic load causes ground failure, sand blasting and water blasting on the ground, building destruction and so on, which has caused huge losses to the national economy. Put people's lives and property under serious threat. As people pay more and more attention to liquefaction problems, a large number of liquefaction phenomena of unsaturated sand sites have been found in practical engineering. However, the research on liquefaction of unsaturated sandy soils is relatively rare. Therefore, it is very important to study the liquefaction mechanism of unsaturated sand. Based on the shaking table test, the liquefaction tests of five groups of sand model foundations with saturation of 100% and 85% and 80% have been carried out in this paper. Through the analysis of the test results, it is found that saturation is one of the important factors affecting the liquefaction of sand soil, and with the decrease of saturation, The liquefaction order of sand foundation is from bottom to top, that is, with the continuous cyclic load, the pore water in sand foundation continuously flows from bottom to top, and the sand in middle and lower layers is liquefied first. The upper sandy soil then liquefies, until the top sandy soil occurs sand blasting, and the whole sand model foundation reaches liquefaction, and the excess pore water pressure of each saturation sand model foundation dissipates to a certain extent after the vibration is over. The velocity of excess pore pressure dissipates with the increase of buried depth. Secondly, because there is no unified understanding of liquefaction discrimination at present, each discriminant method has some limitations, it is not widely applicable, and the accuracy of discrimination is not high. Based on the theory of Bayes discriminant analysis, the database of 40 groups of sand liquefaction samples from Tangshan earthquake and Sanshui earthquake in Guangdong province was constructed. Firstly, a seven-factor Bayes discriminant analysis model is established based on seven evaluation indexes: magnitude M, maximum ground acceleration g _ max, standard penetration hammer number N _ 63.5, specific penetration resistance P _ s, relative density D _ (50), mean particle size D _ (50) and depth of groundwater level dw. Then, according to the influence weight of each evaluation index in the seven-factor Bayes model, A five-factor Bayes discriminant analysis model and a five-factor Fisher discriminant analysis model are proposed, in which magnitude M, maximum ground acceleration g _ max, specific penetration resistance P _ s, relative density Dr and mean particle size D _ 50 are used as evaluation indexes. Finally, by comparing the results of sand liquefaction discrimination between the five-factor model and the seven-factor model, it is found that the accuracy of the five-factor model is higher than that of the seven-factor model. That is to say, the five-factor model proposed in this paper can achieve higher liquefaction discrimination accuracy with fewer evaluation indexes, which can not only avoid the influence of secondary factors on the stability of discriminant function, but also save the construction cost, which is more favorable to liquefaction discrimination in practical engineering.
【学位授予单位】:浙江海洋大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU441;TU435
【相似文献】
相关期刊论文 前10条
1 赵旭荣;;砂土液化机理及其判别方法研究[J];水利科技与经济;2008年09期
2 李琨;;基于可拓学理论的砂土液化势综合评价研究[J];山西建筑;2009年14期
3 刘海忠;王萌;;砂土液化等级综合评价的物元模型[J];科技资讯;2009年29期
4 朱淑莲;唐山地震时砂土液化影响因素的统计分析[J];地震地质;1980年02期
5 朱淑莲;地震时砂土液化的数理统计预测[J];地震地质;1981年03期
6 王克鲁,刘慧敏,胡碧茹,蔡灵铎,盛学斌;唐山地震时北京及邻区砂土液化深度的探讨[J];地震学报;1981年04期
7 李素云;邱通国;谷文祥;;用模糊数学方法评定砂土液化[J];地震学刊;1984年04期
8 谢君斐;;美国砂土液化研究的若干进展[J];国外地震工程;1980年01期
9 杜兴信,王哲;渭河盆地东南部砂土液化模糊综合评价及洪水影响研究[J];工程地质学报;1998年02期
10 马林;砂土液化判定评价与对策[J];水文地质工程地质;2000年04期
相关会议论文 前10条
1 汪闻韶;;砂土液化问题研究[A];海峡两岸土力学及基础工程地工技术学术研讨会论文集[C];1994年
2 李标;黄强;席文熙;慎乃齐;;砂土液化的广义回归神经网络判别法[A];第八届全国工程地质大会论文集[C];2008年
3 任艳荣;;砂土液化与管土相互作用[A];第15届全国结构工程学术会议论文集(第Ⅲ册)[C];2006年
4 张业民;刘义贤;魏宝善;;地基砂土液化的模糊概率及应用[A];第三届全国结构工程学术会议论文集(下)[C];1994年
5 谢君斐;;砂土液化研究与实践的近况[A];中国地震学会第三次全国地震科学学术讨论会论文摘要汇编[C];1986年
6 刘汉龙;陈育民;;砂土液化后流动特性分析[A];第一届全国岩土本构理论研讨会论文集[C];2008年
7 沈珠江;;一个计算砂土液化变形的等价粘弹性模式[A];中国土木工程学会第四届土力学及基础工程学术会议论文选集[C];1983年
8 田景元;;基于动三轴试验数据的砂土液化有限元分析[A];首届全国水工抗震防灾学术会议论文集[C];2006年
9 刘洋;;基于离散元模拟的砂土液化微细观机理分析[A];颗粒材料计算力学研究进展[C];2012年
10 周云东;刘汉龙;丁晓峰;杨寿松;;砂土地震液化后大变形机理研究[A];中国土木工程学会第九届土力学及岩土工程学术会议论文集(下册)[C];2003年
相关博士学位论文 前4条
1 于艺林;考虑应力主轴旋转的各向异性砂土本构规律与数学模型[D];清华大学;2010年
2 迟明杰;砂土的剪胀性及本构模型的研究[D];北京交通大学;2008年
3 王富强;自然排水条件下砂土液化变形规律与本构模型研究[D];清华大学;2010年
4 王庶懋;砂土与EPS颗粒混合的轻质土(LSES)动力特性的试验研究[D];河海大学;2007年
相关硕士学位论文 前10条
1 王娜;粒径与级配对海岸砂土液化影响的动三轴试验[D];中国海洋大学;2015年
2 孙文博;化学法降低饱和度处理可液化地基室内试验研究[D];东南大学;2016年
3 赵磊;中密实砂土的三剪统一剪胀性本构模型及ABAQUS的二次开发[D];南昌大学;2016年
4 刘奇;强震下砂土液化对连续梁桥地震响应的影响[D];重庆交通大学;2016年
5 戴志广;基于振动台试验开展砂土液化的机理与判别研究[D];浙江海洋大学;2017年
6 陈荣淋;基于可拓学和支持向量机理论的砂土液化势综合评价研究[D];华侨大学;2006年
7 李声立;颗粒级配对砂土静态液化行为的影响研究[D];哈尔滨工业大学;2010年
8 蔡红超;基于中心点法的砂土液化判别方法及其应用研究[D];华南理工大学;2010年
9 李晓广;高频机械振动下的砂土液化特性及其应用[D];上海交通大学;2011年
10 刘涛德;根系对可液化砂土的加固效果及影响因素的研究[D];哈尔滨工业大学;2013年
,本文编号:2170409
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2170409.html