当前位置:主页 > 科技论文 > 建筑工程论文 >

剪切过程中岩石节理面形貌与应力演化研究

发布时间:2018-08-15 16:20
【摘要】:节理面通常是岩体的薄弱面,在实际工程中岩体的破坏大多因节理引起,而节理表面几何形态又是控制岩体力学的重要因素。基于此,本文主要研究了规则形状与随机形状的节理面在剪切过程中形貌与应力的演化规律,主要成果如下:(1)剪切过程中锯齿状节理面的形貌变化:形貌的高度均方根与坡度均方根的变化规律为:初期较平缓,之后断崖式下跌,最后趋近平稳;自相关函数曲线几乎水平不变。(2)剪切过程中锯齿状节理面的应力演化:节理面附近区域的拉应力曲线呈起伏波浪状,其绝大多数峰值点约为0.5·σn'。节理面附近区域的压应力曲线呈矩形脉冲状,其曲线的下限值约为-2.5·σn。接触压应力曲线呈矩形脉冲状,曲线近似为同周期恒振幅的振荡变化,波动范围为(0.2~1.5)Λσn。剪应力曲线呈矩形脉冲状,曲线波动范围是f.(0.2~1.5)·σ.n,形貌变化对剪切应力的贡献为0.2·σn ·f,剪应力与接触压应力的比值为摩擦系数。节理面最小接触面积与全接触面积的比值为26.7%。节理面的张开距离呈现周期性。(3)剪切过程中JRC曲线节理面的形貌变化:形貌的的高度均方根、坡度均方根、自相关函数逐渐减小,最后趋于稳定。(4)剪切过程中JRC曲线形貌节理面的应力演化:不同形貌节理面附近区域的拉应力、压应力差异极大;相同形貌节理面附近区域的压应力与拉应力规律类似,其出现峰值的位置也接近,峰点处其值较大,随着远离各峰点其值趋近于0。不同形貌的接触压应力、剪应力差异极大;相同形貌的接触压应力与剪应力规律类似且出现峰值的位置接近。接触压应力、剪应力的峰点处其值较大,随着远离各峰点其值趋近于0。整个剪切过程中应力曲线的峰值个数点逐渐减少。同一剪切试验剪应力与接触压应力的比值为摩擦系数。张开距离的变化为:曲线急剧上升至峰值点,再下降,最后趋近水平。不同的JRC节理形貌接触面积曲线变化规律基本相同,接触面积与剪切位移可以拟合为y=axb曲线。
[Abstract]:Joint plane is usually the weak plane of rock mass. In practical engineering, the failure of rock mass is mostly caused by joint, and the geometry of joint surface is an important factor to control rock mechanics. Based on this, the evolution of the shape and stress of joints with regular shape and random shape in shear process is studied in this paper. The main results are as follows: (1) the morphologies of sawtooth joints during shearing: the variation law of the high RMS and the RMS of slope is: the initial stage is relatively flat, then the cliff-like decline, and the final approach is stable; The autocorrelation function curve is almost constant. (2) the stress evolution of sawtooth joints in shear process: the tensile stress curves near the joints show undulating wave shape, and most of the peak points are about 0.5 蟽 ng. The compressive stress curve near the joint surface is rectangular pulse shape, and the lower limit of the curve is about -2.5 蟽 n. The contact compressive stress curve shows a rectangular pulse shape, and the curve is approximately oscillatory with the same period and constant amplitude, and the fluctuation range is (0.22 ~ (1.5) A 蟽 ~ (n). The shear stress curve is rectangular pulse shape, the fluctuation range of the curve is f. (0.2n. 5) 蟽. N. The contribution of the shape change to the shear stress is 0.2 蟽 n f, and the ratio of shear stress to contact compressive stress is friction coefficient. The ratio of the minimum contact area to the total contact area of the joint plane is 26.7. The opening distance of joint surface is periodic. (3) the morphology of JRC curve joints changes: the height of RMS root of morphology, the root of slope RMS, the autocorrelation function decrease gradually. (4) the stress evolution of the joint surface of the JRC curve during shear process: the tensile stress in the region near the joint plane with different morphologies varies greatly, the compressive stress in the area near the same joint surface is similar to the tensile stress law, and the stress evolution of the joint plane is similar to that of the tensile stress in the region near the same surface. The position of the peak value is close, the value of the peak point is larger, and the value of the peak value approaches to 0. 5 with the distance from the peak point. The contact compressive stress of different morphology has great difference in shear stress, and the contact compressive stress of the same morphology is similar to the shear stress law and the position of peak value is close. Contact compressive stress, shear stress at the peak point of its value is larger, with far away from the peak point of its value approaching to 0. The number of peak points of the stress curve decreases gradually during the whole shear process. The ratio of shear stress to contact compressive stress in the same shear test is the friction coefficient. The change of opening distance is that the curve rises sharply to the peak point, then decreases, and finally approaches the level. The contact area curves of different JRC joints are basically the same, and the contact area and shear displacement can be fitted to y=axb curves.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU45

【参考文献】

相关期刊论文 前10条

1 黄飘;;不同粗糙度结构面试件剪切试验特性研究[J];建筑监督检测与造价;2015年03期

2 张建明;刘泉声;唐志成;占婷;蒋亚龙;;考虑剪切变形历史影响的节理峰值剪切强度准则[J];山东大学学报(工学版);2015年05期

3 王刚;张学朋;蒋宇静;张永政;;一种考虑剪切速率的粗糙结构面剪切强度准则[J];岩土工程学报;2015年08期

4 杨洁;荣冠;程龙;侯迪;王小江;;节理峰值抗剪强度试验研究[J];岩石力学与工程学报;2015年05期

5 姚孟迪;荣冠;侯迪;尹鹏海;;节理三维形貌与抗剪强度相关性研究[J];水电能源科学;2013年12期

6 刘博;李海波;刘亚群;夏祥;;循环荷载作用下节理凸起体概化破坏模型及剪切强度计算分析[J];岩石力学与工程学报;2013年S2期

7 夏才初;宋英龙;唐志成;宋英杰;;反复直剪试验节理强度与粗糙度变化的研究[J];中南大学学报(自然科学版);2012年09期

8 曹秋菊;王金安;;断裂岩石粗糙性与岩体抗剪强度和机理的实验研究[J];中国矿业;2012年05期

9 朱小明;李海波;刘博;邹飞;莫振泽;宋全杰;牛磊;;含二阶起伏体的模拟岩体节理试样剪切特性试验研究[J];岩土力学;2012年02期

10 刘克辉;陆文;田加亨;李强;;岩体结构面不同剪切方向的抗剪强度模拟试验研究[J];矿业研究与开发;2009年02期

相关硕士学位论文 前1条

1 孔祥辉;结构面表面形态与力学性质相关性研究[D];长江科学院;2008年



本文编号:2184746

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2184746.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5d392***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com