增大截面法加固一字型剪力墙抗震性能试验研究
[Abstract]:Increased cross-section reinforcement is a common and effective method to reinforce reinforced concrete structures. It is widely used in shear wall structures. There are usually two ways to increase the cross-section on one side and double sides. However, the specific differences between the two methods in failure mode, hysteretic behavior, bearing capacity, ductility, stiffness and energy dissipation capacity are still unclear. Therefore, the study on the seismic performance of shear walls strengthened by single-side and double-side enlarged cross-section method, and the study on the reinforcement effect of the two methods will improve the research content in the field of seismic strengthening of shear walls in China. Relevant research results and codes have been designed and manufactured. Three one-piece shear wall specimens are designed and manufactured. The axial compression ratio, shear span ratio and reinforcement ratio of each specimen are the same. The results show that: (1) The hysteretic behavior, bearing capacity, ductility, stiffness and energy dissipation capacity of the shear wall strengthened by enlarging section method are improved to a certain extent compared with those of the shear wall strengthened by non-strengthening section method. Double-sided enlarged cross-section reinforcement method can be effectively used in shear wall seismic reinforcement engineering; (2) There are some differences between double-sided and single-sided enlarged cross-section reinforcement of a zigzag shear wall specimen seismic performance, the specific ratio is as follows: the initial stiffness is basically equal, the ultimate bearing capacity ratio is 1.26, the failure load ratio is 1.21, the peak displacement ratio is 1.0. 4. The ultimate displacement ratio is 1.01, the displacement ductility ratio is 1.05, and the equivalent viscous damping ratio is 1.09. It can be seen that the seismic strengthening effect of double-sided enlarged section reinforcement method is better than that of single-sided enlarged section reinforcement method. The failure modes, stress distributions, hysteretic curves and ultimate bearing capacity of the wall are obtained by numerical simulation of the whole process of cyclic loading. The results are compared with the experimental results, which verify the reinforcement effect and the reliability of finite element simulation of the single-side and double-side enlarged section reinforcement method. Three specimens of one-way shear wall strengthened with one-way enlarged cross-section are analyzed by finite element method, and the influence of different thickness of strengthened cross-section on the seismic performance of one-way enlarged cross-section shear wall is studied. The results of finite element analysis are in good agreement with the test results, which proves that the finite element model and analysis process established in this paper are reasonable and reliable, and have high accuracy. (2) With the increase of the thickness of the reinforced section, the bearing capacity and ductility of the strengthened shear wall specimens with one-sided section increase gradually. In conclusion, the method of enlarging the cross-section can significantly improve the seismic performance of the I-shaped shear wall and is suitable for shear. The seismic strengthening effect of double-side enlarged section reinforcement method is better than that of single-side enlarged section reinforcement method. The seismic performance of single-side enlarged section reinforced I-shaped shear wall can achieve the same effect by increasing the thickness of reinforcement section. The preliminary study on seismic performance will provide reference for the reasonable reinforcement of shear wall structure, and lay a theoretical foundation for further study on the seismic performance of shear wall strengthened by enlarged section method, and optimize the reinforcement method of shear wall enlarged section, which has important research value.
【学位授予单位】:西南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU398.2;TU352.11
【参考文献】
中国期刊全文数据库 前10条
1 封卉梅;赵军;白书兴;;不同纤维片材加固钢筋混凝土剪力墙试验研究[J];施工技术;2015年17期
2 史庆轩;王斌;王朋;田建勃;;T形截面RC剪力墙双向抗震性能对比分析[J];西安建筑科技大学学报(自然科学版);2014年02期
3 王晓燕;苏益声;燕柳斌;;一字形型钢高强混凝土短肢剪力墙抗震性能试验研究[J];建筑结构学报;2014年02期
4 钱稼茹;宋晓璐;冯葆纯;张以超;王海宁;;喷涂混凝土夹心剪力墙抗震性能试验研究及有限元分析[J];建筑结构学报;2013年10期
5 潘鹏;邓开来;石苑苑;苗启松;李文峰;王涛;;低配筋剪力墙单边抗震加固试验研究[J];工程抗震与加固改造;2013年02期
6 任铮钺;王立久;孙治国;;建筑模网混凝土墙体抗震试验研究与有限元分析[J];工程力学;2012年12期
7 黄建锋;朱春明;龚治国;张富文;;增大截面法加固震损钢筋混凝土框架的抗震性能试验研究[J];土木工程学报;2012年12期
8 邓宗才;曾洪超;;层内混杂FRP加固混凝土剪力墙抗震性能试验[J];北京工业大学学报;2012年10期
9 邓开来;潘鹏;石苑苑;苗启松;李文峰;王涛;;老旧住宅中低配筋剪力墙抗震性能试验研究[J];土木工程学报;2012年S1期
10 刘勋;施卫星;王进;;传统抗震加固技术和新型抗震加固技术的总结与对比[J];结构工程师;2012年02期
中国博士学位论文全文数据库 前4条
1 柯晓军;新型高强混凝土组合柱抗震性能及设计方法研究[D];西安建筑科技大学;2014年
2 刘祖强;型钢混凝土异形柱框架抗震性能及设计方法研究[D];西安建筑科技大学;2012年
3 皮天祥;钢筋混凝土剪力墙小跨高比连梁抗震性能试验和设计方法研究[D];重庆大学;2008年
4 蒋隆敏;钢筋网高性能水泥复合砂浆加固RC柱在静载与低周反复荷载作用下的性能研究[D];湖南大学;2006年
中国硕士学位论文全文数据库 前10条
1 刘超;HPFL加固不同轴压比RC剪力墙抗震性能研究[D];湖南工业大学;2016年
2 李政;梁增大截面加固后框架结构的受力性能研究[D];西安科技大学;2015年
3 李庞;剪力墙开洞粘钢加固的力学性能有限元分析研究[D];长安大学;2014年
4 贾茗子;某框架—剪力墙结构的抗震鉴定与加固研究[D];北京交通大学;2013年
5 周少渊;增设剪力墙抗震加固方法的研究与应用[D];华南理工大学;2011年
6 封卉梅;不同类型片材加固剪力墙性能比较研究[D];郑州大学;2011年
7 关志贤;湿式外包钢加固钢筋混凝土柱非线性有限元分析研究[D];华南理工大学;2010年
8 赵宏强;加大截面法加固混凝土构件的动力性能研究[D];西安科技大学;2008年
9 马燕杰;柱加大截面、粘钢、碳纤维加固框架节点对比分析[D];同济大学;2007年
10 盛光远;粘钢加固钢筋混凝土剪力墙抗震性能研究[D];同济大学;2006年
,本文编号:2247013
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2247013.html