基于火灾随机性的高大空间烟气温升研究
[Abstract]:As an important architectural form, tall space architecture is widely used in architectural design, such as waiting hall, terminal building, auditorium and so on. It has large scale, high space, special structure and high fire risk. New requirements are put forward for fire prevention and rescue. Fire smoke temperature rise will affect the building structure safety, personnel evacuation, fire rescue and so on, and the fire development is a process of certainty and randomness, but its randomness is not random and irregular. The random factors in the process of fire development generally follow a certain statistical law. Therefore, it is of great practical significance to study the smoke temperature rise of tall space buildings under the action of fire randomness. In this paper, the influence of various factors on flue gas temperature rise in large space was studied by means of variance analysis. The results show that the most significant factor affecting the flue gas temperature in large space is the power of the fire source. In the randomness analysis, the randomness of the parameters affecting the power of the fire source should be emphasized. Based on the theory of fire dynamics and solid fire experiments, the characteristics of flue gas temperature rise in large space are studied. The experimental results show that the temperature fluctuation in the flame zone is greater than that in the plume zone, and the buoyancy plume region increases with the plume height. The temperature is decreasing gradually. In the roof jet area, with the space point far away from the central line of the fire source, the flue gas temperature shows a decreasing trend, with obvious non-uniform distribution characteristics. At the same time, according to the experimental results, the applicability of parameterized temperature rise model in predicting fire smoke temperature rise in large space is verified. In the analysis of the randomness of temperature rise in large space, the parameters affecting temperature rise are divided into deterministic parameters and random parameters, and the probability density function of random parameter distribution is studied. Through investigation and investigation, the normal distribution of fire load density clothing for tall and large space buildings of station type is obtained. Through the reference and analysis of data, the uniform distribution of material flammability coefficient, the logarithmic normal distribution of fire overfire area and fire growth coefficient clothing are obtained. According to the probability distribution of random parameters, the random scene group is determined by Latin hypercube sampling method. The maximum heat release rate, the equivalent diameter of the fire source, the mean value and standard deviation of the highest temperature rise in the center line of the fire source are analyzed. Probability density (PDF), cumulative probability (CDF) et al. The logarithmic normal distribution of the highest temperature rising clothes of the central line of the fire source, the logarithmic mean 5.8697 and the logarithmic standard deviation of 0.31396 are obtained. The probability density function of the highest temperature rise of the central line of the fire source is obtained by fitting. The probability distribution of maximum temperature rise of flue gas at different distances from the central line of fire source is studied by sampling analysis. The maximum temperature rise probability density function is obtained by fitting the logarithmic normal distribution of maximum temperature rise. The application of probability distribution of flue gas temperature rise in building fire safety evaluation is illustrated by case analysis. According to the critical temperature criterion, the failure probability of steel structure members in large space is analyzed, and the failure probability of steel structure members in the case is obtained. In order to conveniently calculate and analyze the probability distribution of flue gas temperature rise in buildings with different area, height and fire load, a program of "smoke temperature rise and structural failure analysis based on the randomness of fire" was developed.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU998.1;TU834
【参考文献】
相关期刊论文 前10条
1 闫怀林;黄迪;张国维;朱国庆;;火灾不确定性因素下的人员疏散时间模型[J];消防科学与技术;2016年12期
2 李俊毅;朱国庆;;基于正交试验法的大空间自然排烟影响因素分析[J];消防科学与技术;2015年07期
3 高云骥;朱国庆;;火羽流轴向温度大涡模拟与实验比较[J];消防科学与技术;2014年08期
4 高勋;朱国庆;;基于烟气特性的商业综合体防排烟研究[J];消防科学与技术;2014年06期
5 宋波;赵力增;白殿涛;智会强;王海娟;王健强;田立伟;罗宗军;张君娜;刘欣;;普通轿车燃烧特性的试验研究[J];中国安全科学学报;2013年07期
6 薛素铎;梁劲;李雄彦;;大空间建筑火灾空气升温经验公式[J];北京工业大学学报;2013年02期
7 张国维;朱国庆;吴维华;黄丽丽;;高大空间池火羽流中心线轴向温度试验研究[J];消防科学与技术;2012年09期
8 黎夏舒;;某博物馆典礼大厅烟气控制系统设计[J];消防科学与技术;2012年05期
9 季经纬;郝耀华;王玉娥;李金鸽;;蒙特卡洛方法计算两区域火灾中的热辐射[J];中国矿业大学学报;2011年02期
10 孔得朋;陆守香;冯磊;卢兆明;;热释放速率的不确定性对可用安全疏散时间的影响[J];中国科学技术大学学报;2010年07期
相关博士学位论文 前3条
1 张国维;高大空间钢结构建筑火灾全过程性能化防火设计方法研究[D];中国矿业大学;2015年
2 孔得朋;火灾安全设计中参数不确定性分析及耦合风险的设计方法研究[D];中国科学技术大学;2013年
3 褚冠全;基于火灾动力学与统计理论耦合的风险评估方法研究[D];中国科学技术大学;2007年
相关硕士学位论文 前5条
1 方磊;基于LHS抽样的不确定性分析方法在概率安全评价中的应用研究[D];中国科学技术大学;2015年
2 李利敏;办公建筑室内可燃物燃烧特性实验及火灾危险性分析[D];中国矿业大学;2014年
3 刘阳;基于FDS的建筑火灾数值模拟及安全疏散研究[D];辽宁工程技术大学;2012年
4 吴小华;基于区域模拟的室内火灾升温曲线研究[D];中南大学;2011年
5 靳飞;火灾下建筑室内空气升温的随机性研究[D];同济大学;2007年
,本文编号:2265479
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2265479.html