供水管网系统DMA分区流量数据聚类分析研究
[Abstract]:With the development of intelligent water meter technology, the real-time monitoring system enables the water supply department to have a lot of data about the properties of the water supply network. The intelligent water meter includes two parts: recording water quantity and communication system, which can transmit and store water consumption data in real time. Smart water meters have been widely used, and most cities have such devices. However, the intelligent water meters transmit data about the properties of the pipe network, which are only used by the Water Department for routine operation and economic efficiency evaluation. After that, the bulk of the data will be stored for some time. Intelligent water meters continuously transmit data, and as the number increases, the Water Division removes the data for memory reasons, as well as the valuable pipe network information contained in the data. With the development of data mining technology, we have the ability to process and analyze the data, and to mine the information contained in the data to the maximum extent. The analysis of these data is helpful to the innovation of water supply network management, planning and user service, making better use of water resources and protecting water resources. In this paper, according to the characteristics of DMA traffic data, a clustering algorithm based on the distance and shape of DMA partition water consumption curve is proposed. The clustering method (KS), is relative to classical K-means, autonomous mapping (SOM) and fuzzy C-means. More can reflect the DMA zoning water consumption law. The traffic data of 43 DMA districts were obtained from the DMA sub-area project of Y city. After data preprocessing of 43 DMA partition traffic data, clustering analysis was carried out, and the results of four clustering algorithms, KS,K-means,SOM and FCM, were compared. The result shows that the clustering effect of KS is the best, and by analyzing the clustering results of KS, it can guide the Water Division to detect abnormal conditions (leakage, stealing). In the process of flow data processing in 43 DMA subzones, by observing the variation curves of water consumption in 43 DMA zones, the time-varying coefficients calculated from the teaching materials, such as Water supply Engineering, etc., are found out. Less than most hours of water consumption in the total water consumption of the whole day. It is shown that if the formula of time-varying coefficient in the teaching materials such as Water supply Engineering continues to be used, the safety of water supply in cities such as Y City will not be guaranteed, and it is suggested that the formula of time-varying coefficient should be further revised.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU991.33
【参考文献】
相关期刊论文 前10条
1 周丰;王未央;;基于最小最大模块化集成特征选择的改进[J];计算机技术与发展;2016年09期
2 李海林;郭崇慧;;时间序列数据挖掘中特征表示与相似性度量研究综述[J];计算机应用研究;2013年05期
3 谢福鼎;赵晓慧;嵇敏;平宇;;一种时间序列动态聚类的算法[J];计算机应用研究;2012年10期
4 杨通辉;高玲;臧丽;;基于相似性的商品陈列研究[J];微型机与应用;2012年05期
5 张春华;徐卫;张伟;;数量关联规则挖掘及其典型算法分析[J];电脑编程技巧与维护;2012年04期
6 周爱武;崔丹丹;肖云;;一种改进的K-means聚类算法[J];微型机与应用;2011年21期
7 陈东宁;崔晓峰;;基于单元格空间的K-Means初始聚类中心选择算法[J];数字技术与应用;2011年10期
8 杨照峰;樊爱宛;樊爱京;;改进的SOM和K-Means结合的入侵检测方法[J];制造业自动化;2010年15期
9 张玉芳;熊忠阳;耿晓斐;陈剑敏;;Eclat算法的分析及改进[J];计算机工程;2010年23期
10 钱宏;;数据挖掘预处理技术的研究[J];电脑知识与技术;2010年17期
相关博士学位论文 前3条
1 张浒;时间序列短期预测模型研究与应用[D];华中科技大学;2013年
2 于澝;基于一维SOM神经网络的聚类及数据分析方法研究[D];天津大学;2009年
3 孙玉芬;基于网格方法的聚类算法研究[D];华中科技大学;2006年
相关硕士学位论文 前10条
1 王广;基于改进差分进化的K均值聚类算法在入侵检测中的研究[D];北京化工大学;2016年
2 李深洛;基于特征的时间序列聚类[D];广西师范大学;2014年
3 孙文杰;基于层次的混合聚类算法研究[D];江西理工大学;2013年
4 孟静;异常数据挖掘算法研究与应用[D];江南大学;2013年
5 朱晓清;电力负荷的分类方法及其应用[D];华南理工大学;2012年
6 熊尚华;基于半监督学习的两种聚类算法研究[D];浙江师范大学;2011年
7 刘长付;数据挖掘技术中的关联规则挖掘算法研究[D];江西理工大学;2010年
8 李旭涛;基于凝聚模糊K-means的聚类方法研究[D];哈尔滨工业大学;2009年
9 郭炜星;数据挖掘分类算法研究[D];浙江大学;2008年
10 李宁宁;基于粗糙集理论的数据挖掘应用研究[D];大连理工大学;2007年
,本文编号:2302258
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2302258.html