基于贝叶斯网络城市燃气管道失效事故后果评价研究
[Abstract]:In the process of urban gas pipeline operation, there are risks such as explosion, combustion and poisoning. The leakage of pipeline failure will be accompanied by casualties, property losses and other accident consequences, which has become the main hidden danger of gas transmission. Therefore, it is necessary to evaluate and predict the severity of gas pipeline accidents, and provide scientific decision basis for gas pipeline risk managers. The combination of serious accident consequence and accident occurrence probability is helpful for managers to put forward concrete measures to prevent the accident from occurring and expanding. This paper attempts to establish a model for evaluating the consequences of gas pipeline failure accidents. The main purpose of this model is to predict and evaluate the severity of accident consequences under the condition of uncertain information and missing data. Firstly, on the basis of the previous studies, the author makes a comprehensive analysis of the consequences of gas accidents, and discusses the evolution law of the consequences of gas accidents with the thought of system theory. Based on the study of two common types of fire and explosion in gas accidents, the consequences of the accidents are analyzed, including casualties, accident losses, social impacts and environmental impacts. These four aspects are used as indicators to measure the severity of the consequences of the accident. Starting from the whole process of accident development, the main factors influencing the severity of accident consequence are put forward. This study provides a theoretical basis for the later application of Bayesian network to the evaluation of pipeline failure consequences. Secondly, the Bayesian network structure is constructed. The first step is to select the network nodes, the second step is to determine the relationship between the network nodes. The most important thing is to determine the relationship between nodes. The method of machine learning and consulting experts is used to determine the relationship between nodes and to construct Bayesian network structure. Thirdly, the Bayesian network parameters are determined. According to the investigation report of 25 gas pipeline failure accidents, corresponding to each node variable, according to the value range of each node variable, the network node sample data is obtained, and then the conditional probability of the network node is calculated by using the sample statistics method. The conditional probability table of each node variable is obtained, and the Bayesian network accident consequence evaluation model of gas pipeline is constructed. Finally, the model is introduced and validated with examples. Through the concrete analysis, the inference function of the constructed Bayesian network is applied to evaluate the accident consequence, and the accident consequence of the model evaluation and the actual accident consequence are compared and analyzed to verify the validity of the model. It is concluded that Bayesian network can be applied to the accident consequence evaluation.
【学位授予单位】:首都经济贸易大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU996
【参考文献】
相关期刊论文 前10条
1 谢洪涛;丁祖德;;基于贝叶斯网络的隧道施工坍塌事故诊断方法[J];昆明理工大学学报(自然科学版);2013年01期
2 马祖军;谢自莉;;基于贝叶斯网络的城市地震次生灾害演化机理分析[J];灾害学;2012年04期
3 陈静;付敬奇;;贝叶斯网络在火灾报警系统中的应用[J];仪表技术;2011年10期
4 尤秋菊;樊建春;朱伟;郑建春;;北京市燃气事故风险评估与控制对策[J];中国安全生产科学技术;2011年10期
5 李国华;;贝叶斯公式的应用[J];牡丹江大学学报;2011年07期
6 蒋漳河;;基于HSE与风险的城市燃气管道安全评估与管理[J];中国公共安全(学术版);2010年01期
7 裘江南;师花艳;叶鑫;王延章;;基于事件的定性知识表示模型[J];系统工程;2009年10期
8 郭艳军;叶鹰;;主成分分析在确定贝叶斯网络参数中的应用[J];湖北工业大学学报;2009年01期
9 孙鹏程;陈吉宁;;基于贝叶斯网络的河流突发性水质污染事故风险评估[J];环境科学;2009年01期
10 孙平;王立;;城市地下管线的现状、问题与治理[J];安全;2008年05期
相关博士学位论文 前2条
1 朱明敏;贝叶斯网络结构学习与推理研究[D];西安电子科技大学;2013年
2 周忠宝;基于贝叶斯网络的概率安全评估方法及应用研究[D];国防科学技术大学;2006年
相关硕士学位论文 前10条
1 何佳薇;贝叶斯统计理论的形成及发展[D];山西师范大学;2015年
2 胡书香;贝叶斯网络在铁路工程项目质量控制中的应用研究[D];兰州交通大学;2013年
3 陶健;基于贝叶斯网络的山区道路危险货物运输风险评价研究[D];长安大学;2011年
4 杨海深;贝叶斯网络中不确定性知识推理算法及其应用研究[D];华南理工大学;2010年
5 刘艳华;基于多米诺效应的城市燃气管网事故后果研究[D];西南石油大学;2009年
6 陈鹏;基于Bayesian的基因调控网络的研究[D];哈尔滨工业大学;2008年
7 胡惠荣;城市燃气管道风险评估系统的研究和应用[D];同济大学;2008年
8 僮祥英;模糊神经网络在埋地燃气管道事故后果评价中的应用研究[D];贵州大学;2006年
9 李大全;成品油管道泄漏扩散分析及危害后果评价[D];西南石油学院;2005年
10 马令申;城市埋地燃气管道危险源辩识评价研究与专家系统框架开发[D];北京化工大学;2003年
,本文编号:2320154
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2320154.html