当前位置:主页 > 科技论文 > 建筑工程论文 >

型钢混凝土柱—钢梁组合框架结构抗震性能研究

发布时间:2018-12-12 16:53
【摘要】:型钢混凝土柱-钢梁组合框架结构是一种新型的钢与混凝土组合结构体系。本文以工程实例为背景,建立了 12层型钢混凝土柱-钢梁组合框架结构模型。运用有限元软件ETABS对结构进行模态分析、振型分解反应谱分析、线性时程分析、静力非线性pushover分析,研究框架柱型钢含钢率、框架柱与框架钢梁线刚度比、框架柱混凝土强度等级、现浇钢筋混凝土楼板厚度四个因素对结构自振特性、弹性变形能力及整体抗侧移刚度、弹塑性变形及延性性能、地震耗能能力等的影响。主要结论如下:(1)当型钢混凝土柱含钢率分别由3.86%、5.14%、4%增大到11.14%、12.57%、9.2%时,结构在线性阶段的第一自振周期由2.038s减小到2.013s,最大层间位移角由1/800减小到1/869,底部剪力由3853.18KN增大到3897.54KN,表明结构的侧向变形随之减小,整体抗侧移刚度提高。在弹塑性阶段,同样增大结构的含钢率,结构在性能点处的有效周期由2.01s减小到1.81s,最大层间位移角由1/163减小到1/168,结构梁柱两端塑性铰发展越来越充分,变形量越来越大。(2)当结构的边梁柱线刚度比由0.117、0.204、0.390增大到0.334、0.580、1.11,中梁柱线刚度比由0.066、0.116、0.223增大到0.210、0.366、0.699时,结构在线性阶段的第一自振周期由2.038s减小到1.446s,最大层间位移角由]/800减小到1/1280,底部剪力由3853.18KN增大到7341.61KN,表明结构的侧向变形随之显著减小,整体抗侧移刚度显著提高。在弹塑性阶段,同样增大结构的梁柱线刚度比,结构在性能点处的有效周期从2.01s减小到1.55s,最大层间位移角由1/163减小到1/199,框架梁柱两端塑性铰开展越来越充分。但是当结构边梁柱线刚度比增大到0.264、0.458、0.876时,中梁柱线刚度比增大到0.16、0.277、0.53时,组合框架结构型钢混凝土柱比钢梁先屈服破坏,结构出现"强梁弱柱"屈服现象,不符合建筑抗震设计要求的基本原则"强柱弱梁"。(3)当框架柱混凝土强度等级由C30增大到C80时,结构在线性阶段的第一自振周期由2.057s减小到2.002s,最大层间位移角由1/858减小到1/879,底部剪力由3851.88KN增大到3879.74KN,可见框架结构的侧向变形随之减小,整体抗侧移刚度提高。在弹塑性阶段,同样增大结构的混凝土强度等级,结构在性能点处的有效周期由2.045s减小到1.958s,最大层间位移角由1/161减小到1/172,结构梁柱两端塑性铰发展越来越充分,变形量越来越大。(4)在线性阶段,当楼板厚度由100mm增加到120mm时,框架的整体抗侧移刚度显著提升。当楼板厚度从120mm再增加到150mm时,结构的弹性变形和抗侧移刚度显著下降。在弹塑性阶段,楼板厚度从100mm增大到150mm时,结构在性能点处的有效周期从2.01s减小到1.79s,最大层间位移角由1/163减小到1/174,结构梁柱两端塑性铰发展越来越充分,变形量越来越大。
[Abstract]:Steel reinforced concrete column-steel beam composite frame structure is a new type of steel and concrete composite structure system. In this paper, a 12-story steel reinforced concrete column-steel beam composite frame structure model is established based on an engineering example. Modal analysis, mode decomposition response spectrum analysis, linear time history analysis, static nonlinear pushover analysis, steel content ratio of frame column steel and linear stiffness ratio of frame column to frame steel beam are studied by using finite element software ETABS. The influence of four factors, such as strength grade of frame column concrete, thickness of cast-in-place reinforced concrete floor slab, on the natural vibration characteristics, elastic deformation ability and overall anti-lateral displacement stiffness, elastic-plastic deformation and ductility, seismic energy dissipation ability, etc. The main conclusions are as follows: (1) when the steel content of SRC columns increases from 3.865.14% to 11.14% 12.57,9.2% respectively, The first natural vibration period of the structure decreases from 2.038 s to 2.013 s, the maximum interstory displacement angle decreases from 1 / 800 to 1 / 869, and the bottom shear force increases from 3853.18KN to 3897.54 KN, which indicates that the lateral deformation of the structure decreases. The overall anti-lateral stiffness is improved. In the elastic-plastic stage, the steel content of the structure is also increased, the effective period of the structure at the performance point is reduced from 2.01s to 1.81s, and the maximum interstory displacement angle is reduced from 1 / 163 to 1 / 168.The plastic hinge at both ends of the structure Liang Zhu develops more and more fully. (2) when the line stiffness ratio of Liang Zhu on the side of the structure increases from 0.117 to 0.204 ~ 0.390 to 0.334U 0.580 ~ 1.11, and from 0.066 ~ 0.116 ~ 0.116 ~ (0.223) to 0.21010 ~ 0.366,0.699, the ratio of line stiffness is increased from 0.066 ~ 0.116 ~ (0.223) to 0.21010 ~ (0.366,0.699). The first natural vibration period of the structure decreases from 2.038 s to 1.446s, the maximum interstory displacement angle decreases from] / 800 to 1 / 1280, and the bottom shear force increases from 3853.18KN to 7341.61 KN, which indicates that the lateral deformation of the structure decreases significantly. The overall anti-lateral stiffness is improved significantly. In the elastoplastic stage, the effective period of the structure at the performance point is reduced from 2.01s to 1.55s, and the maximum interstory displacement angle is reduced from 1 / 163 to 1 / 199. The plastic hinge at both ends of the frame Liang Zhu is more and more fully developed. However, when the line stiffness ratio of Liang Zhu on the side of the structure is increased to 0.264 ~ 0.458,0.876, and the ratio of line stiffness of middle Liang Zhu is increased to 0.160.277,0.53, the steel reinforced concrete columns of composite frame structure yield and destroy before the steel beams. The yield phenomenon of "strong beam and weak column" appears in the structure, which does not meet the basic principle of seismic design. (3) when the concrete strength grade of frame column increases from C30 to C80, The first natural vibration period of the structure decreases from 2.057s to 2.002s, the maximum interstory displacement angle decreases from 1 / 858 to 1 / 879, and the bottom shear force increases from 3851.88KN to 3879.74KN, so the lateral deformation of the frame structure decreases. The overall anti-lateral stiffness is improved. In the elastic-plastic stage, the effective period of the structure at the performance point is reduced from 2.045 s to 1.958 s, and the maximum interstory displacement angle is reduced from 1 / 161 to 1 / 172. The plastic hinge at both ends of the structure Liang Zhu develops more and more fully and the deformation becomes larger and larger. (4) in the linear stage, when the floor thickness is increased from 100mm to 120mm, the overall anti-lateral stiffness of the frame increases significantly. When floor thickness increases from 120mm to 150mm, the elastic deformation and anti-lateral stiffness of the structure decrease significantly. In the elastoplastic stage, when the floor thickness increases from 100mm to 150mm, the effective period of the structure at the performance point decreases from 2.01s to 1.79s, and the maximum interstory displacement angle decreases from 1 / 163 to 1 / 174.The plastic hinge at both ends of the structure develops more and more fully. The amount of deformation is increasing.
【学位授予单位】:西安工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TU398.9;TU352.11

【参考文献】

相关期刊论文 前10条

1 薛建阳;翟磊;马林林;葛鸿鹏;董金爽;吴琨;;钢结构仿古建筑带斗h1檐柱抗震性能试验研究及有限元分析[J];土木工程学报;2016年07期

2 薛建阳;杨青峰;刘祖强;赵鸿铁;周超锋;;型钢混凝土异形柱中框架和边框架抗震性能试验对比分析[J];西安建筑科技大学学报(自然科学版);2016年03期

3 王伟;廖芳芳;陈以一;;基于微观机制的钢结构节点延性断裂预测与裂后路径分析[J];工程力学;2014年03期

4 席攀;沈之容;;Pushover分析中侧向力分布模式对结果的影响[J];佳木斯大学学报(自然科学版);2013年02期

5 叶列平;程光煜;曲哲;陆新征;;基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J];建筑结构学报;2012年11期

6 石永久;王萌;王元清;;循环荷载作用下结构钢材本构关系试验研究[J];建筑材料学报;2012年03期

7 罗云蓉;王清远;刘永杰;黄崇湘;;Q235、Q345钢结构材料的低周疲劳性能[J];四川大学学报(工程科学版);2012年02期

8 卓承军;;型钢混凝土在结构中的应用[J];中华建设;2012年01期

9 罗云蓉;王清远;;建筑用抗震钢高应变低周及超低周疲劳性能研究进展[J];四川建筑科学研究;2011年03期

10 田丹丹;丁小军;冯成运;;基于不同含钢率的型钢混凝土柱-钢梁混合结构抗震分析[J];甘肃科技;2011年02期

相关博士学位论文 前2条

1 王涛;端板连接弯矩—转角关系及半刚性钢框架抗震性能的研究[D];华南理工大学;2013年

2 何文辉;方钢管混凝土柱—钢梁组合框架抗震性能研究[D];湖南大学;2009年

相关硕士学位论文 前10条

1 郭华军;型钢混凝土剪力墙抗震性能的试验研究[D];山东建筑大学;2016年

2 岳帅;基于Pushover分析的多角度能力谱法研究[D];北京交通大学;2015年

3 张尘宇;型钢混凝土组合筒体的力学特性研究以及在超高层建筑中的应用[D];贵州大学;2015年

4 刘苗苗;带桁架式转换层的高层建筑结构抗震性能研究[D];石家庄铁道大学;2014年

5 兰琳;高层型钢混凝土框架柱的抗震性能研究[D];西南交通大学;2014年

6 冯迦楠;型钢混凝土柱—钢梁组合框架抗震性能研究[D];郑州大学;2014年

7 关雨辰;性能设计在钢框架结构中的应用研究[D];华南理工大学;2013年

8 郭俊琼;型钢混凝土组合结构梁柱节点受力性能研究[D];西南交通大学;2011年

9 鲍利媛;复杂高层塔式结构地震反应分析[D];西安科技大学;2010年

10 王宝峰;在役半刚性连接钢框架结构的抗震性能评估[D];大连理工大学;2010年



本文编号:2374948

资料下载
论文发表

本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2374948.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6e97e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com