基于符号动力学信息熵与SVM的液压泵故障诊断
发布时间:2018-12-15 07:46
【摘要】:针对泵车液压泵早期故障特征信号微弱、故障特征难以提取的问题,提出了一种基于符号动力学信息熵与支持向量机(support vector machine,简称SVM)的泵车液压泵故障诊断方法。分别模拟了液压泵9种故障状态,测取了各状态下多测点的振动信号样本值。利用时间序列的符号动力学信息熵,计算各振动信号的符号动力学信息熵Hk,确定了各状态下相应的信息熵特征向量。建立了不同状态特征向量训练集,再结合支持向量机对液压泵故障模式进行诊断与识别,测试结果准确率为98.71%。将该方法与改进的BP(back propagation,简称BP)神经网络诊断结果进行了对比,结果表明该方法的识别率更高,诊断时间更短,适用于现场液压泵故障的在线诊断。
[Abstract]:In order to solve the problem that the early fault characteristic signal of hydraulic pump is weak and it is difficult to extract the fault feature, a fault diagnosis method based on symbolic dynamic information entropy and support vector machine (SVM) for hydraulic pump is proposed in this paper. Nine fault states of hydraulic pump were simulated, and the vibration signal samples of multiple measuring points were measured. The symbolic dynamics information entropy of each vibration signal is calculated by using the symbolic dynamics information entropy of the time series, and the corresponding information entropy eigenvector under each state is determined by using the symbol dynamics information entropy of the time series. The training sets of different state characteristic vectors are established, and the fault modes of hydraulic pump are diagnosed and identified with support vector machine. The accuracy of the test results is 98.71. The method is compared with the improved BP (back propagation, (BP) neural network diagnosis results. The results show that the method has higher recognition rate and shorter diagnosis time and is suitable for on-line diagnosis of field hydraulic pump faults.
【作者单位】: 武汉科技大学机械自动化学院;
【基金】:国家科技支撑计划资助项目(2012BAF02B01,2011BAF11B01)
【分类号】:TU646
本文编号:2380278
[Abstract]:In order to solve the problem that the early fault characteristic signal of hydraulic pump is weak and it is difficult to extract the fault feature, a fault diagnosis method based on symbolic dynamic information entropy and support vector machine (SVM) for hydraulic pump is proposed in this paper. Nine fault states of hydraulic pump were simulated, and the vibration signal samples of multiple measuring points were measured. The symbolic dynamics information entropy of each vibration signal is calculated by using the symbolic dynamics information entropy of the time series, and the corresponding information entropy eigenvector under each state is determined by using the symbol dynamics information entropy of the time series. The training sets of different state characteristic vectors are established, and the fault modes of hydraulic pump are diagnosed and identified with support vector machine. The accuracy of the test results is 98.71. The method is compared with the improved BP (back propagation, (BP) neural network diagnosis results. The results show that the method has higher recognition rate and shorter diagnosis time and is suitable for on-line diagnosis of field hydraulic pump faults.
【作者单位】: 武汉科技大学机械自动化学院;
【基金】:国家科技支撑计划资助项目(2012BAF02B01,2011BAF11B01)
【分类号】:TU646
【相似文献】
相关期刊论文 前10条
1 肖锦云;购错配件损失6万元──液压泵修理失败的教训[J];工程机械与维修;1999年08期
2 勇伟伦;严逸平;;江阴液压泵厂介绍[J];机械科学与技术;1992年03期
3 尹继瑶;压路机液压泵系统的故障诊断[J];建筑机械化;2002年04期
4 和涛;;工程机械液压系统初始调试方法[J];工程机械与维修;2014年05期
5 张桂顺;K1008A挖掘机换装国产柴油机及液压泵[J];工程机械;1989年03期
6 杨传乐;IPF-85B型混凝土泵车主液压泵的代用[J];工程机械;1992年06期
7 洪敏;新型ZU4双级电动液压泵介绍[J];铁道建筑;2005年02期
8 刘军;;Atlas液压凿岩台车主液压泵故障检测与修理[J];建筑机械;1993年08期
9 梁彪,徐莉萍;瑞典阿特拉斯凿岩台车液压泵故障检测及修理[J];工程机械与维修;1996年05期
10 王红香;史小社;;叉车液压泵接头的改进[J];工程机械与维修;2008年07期
相关硕士学位论文 前1条
1 高峰;移动式液压泵车的研制开发[D];武汉大学;2005年
,本文编号:2380278
本文链接:https://www.wllwen.com/jianzhugongchenglunwen/2380278.html