网球正手击球的不同移动方式对下肢冲击载荷的影响
[Abstract]:Objective: to collect the muscle activity data of lower extremity and tibial nodule acceleration data of forehand movement on different ground surfaces, and to compare the surface of different sites. Different circuits affect lower extremity muscle movement and lower extremities under impact load during forehand movement. Methods: a total of 14 male second-class tennis players from Beijing University of physical Education were tested for forehand batting technique with 2 kinds of field surfaces and 4 circuits. The data were collected by the wireless surface electromyograph and the acceleration acquisition system (triaxial). The surface electromyography and acceleration data of rectus femoris muscle, biceps femoris muscle, anterior tibia muscle, lateral head of gastrocnemius muscle, medial head of gastrocnemius muscle and long gastrocnemius muscle were recorded. The integral electromyography (EMG), root mean square amplitude (RMS), median frequency and maximum acceleration amplitude were calculated, and the time of occurrence of maximum amplitude of X-axis acceleration was recorded. Results (1) the site factor had no significant effect on the maximum amplitude of acceleration in the upper and lower directions. There was significant difference in the maximum amplitude of acceleration between the left and right directions and the front and back directions between the hard ground and the sandy land (P0.05). The maximum amplitude of acceleration in the upper and lower directions had no significant difference in each line, but in the left and right directions, there was no significant difference between the two directions. The maximum amplitude of acceleration in line 4 was the smallest, and the maximum amplitude of acceleration in line 1 was the smallest in the front and rear directions. The site surface had a significant effect on the activation of the muscles of the lower extremity, except for the rectus femoris. The root-mean-square amplitude and integral myoelectric value of the other muscles on the hard ground were higher than those in the sandy land, and there were significant differences. The study came to the following conclusion: 1. The impact load on the lower extremity is the largest in the upper and lower directions, followed by the left and right directions, and the least in the front and back directions. The impact load on the lower limbs of the hard tennis court is higher than that of the sand tennis court when the ball is moving, and it is more obvious in the left and right direction and in the front and back direction. There is no significant difference in the impact load on the lower extremity when the stroke is moved on different circuits, but the impact load on the left and right direction of the lower extremity is obviously lower than that on the side of the forehand. However, with the increase of running distance, the impact load on lower limbs increases and the risk of injury increases by .4. The activation of most lower extremity muscles on the hard ground was significantly higher than that on the sandy ground during the course of moving batting, which indicated that the human body could regulate the nerve-muscle activity mode to cope with the influence of the difference of movement surface material and impact load.
【学位授予单位】:北京体育大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:G845
【相似文献】
相关期刊论文 前1条
1 周丽军,孙奇涵,门长峰,张善元;自由圆管在横向冲击载荷下的动力学行为研究[J];天津工程师范学院学报;2005年03期
相关会议论文 前10条
1 李世海;田振农;;冲击载荷下岩石动态破坏过程的三维离散元模拟[A];计算爆炸力学进展[C];2006年
2 周风华;;冲击载荷作用下韧性金属的多重绝热剪切带的形成机理[A];第八届全国爆炸力学学术会议论文集[C];2007年
3 杨桂通;;结构在冲击载荷作用下的实验研究[A];Hopkinson杆实验技术研讨会会议论文集[C];2007年
4 魏卓慧;王树山;马峰;;刚性截锥形弹体入水冲击载荷[A];第九届全国冲击动力学学术会议论文集(下册)[C];2009年
5 魏卓慧;王树山;马峰;;刚性截锥形弹体入水冲击载荷[A];中国力学学会学术大会'2009论文摘要集[C];2009年
6 马利;胡洋;郑津洋;邓贵德;陈勇军;;圆柱壳在冲击载荷下的失效模式变迁[A];数学·力学·物理学·高新技术交叉研究进展——2010(13)卷[C];2010年
7 刘敬礼;刘华;;受冲击载荷作用下四棱锥夹芯梁的位移比较[A];北京力学会第13届学术年会论文集[C];2007年
8 韩婷;杨嘉陵;刘华;;冲击载荷下复合轻质夹芯结构的动力响应研究[A];北京力学学会第12届学术年会论文摘要集[C];2006年
9 付应乾;董新龙;;冲击载荷下薄壁球壳压缩变形的有限元分析[A];第七届全国爆炸力学实验技术学会会议论文集[C];2012年
10 宋延泽;田锦邦;赵隆茂;;爆炸冲击载荷作用下扁平绕带式高压容器动力响应的数值模拟研究[A];中国力学学会学术大会'2005论文摘要集(上)[C];2005年
相关博士学位论文 前7条
1 姬昆鹏;冲击载荷下覆冰架空输电线路动力响应研究[D];华北电力大学(北京);2016年
2 严刚;航空结构冲击载荷与损伤识别技术方法研究[D];南京航空航天大学;2009年
3 石星烨;热冲击载荷作用下弹塑性材料的空化问题的研究[D];北京科技大学;2015年
4 马炜;散体介质冲击载荷作用下力学行为理论分析与算法实现[D];北京大学;2008年
5 马源;哈密顿体系下弹性圆柱壳的动态屈曲研究[D];大连理工大学;2007年
6 赵荣国;楔环连接结构静力接触行为与动力学特性研究[D];中国工程物理研究院;2004年
7 陈强;冲击载荷作用下移动梁沿支撑结构大位移运动的时变力学研究[D];南京理工大学;2014年
相关硕士学位论文 前10条
1 汝楠;强脉冲电磁力驱动的冲击载荷研究[D];哈尔滨工业大学;2015年
2 郑翔宇;冲击载荷下测压器响应特性研究[D];北京理工大学;2016年
3 王强;典型飞机模拟结构冲击载荷测试研究[D];北京理工大学;2016年
4 邓一彬;网球拍平衡系数与底线击球效果及持拍手臂冲击载荷的关系[D];北京体育大学;2016年
5 李至睿;冲击载荷对种植体周围牙槽骨组织损伤和破坏机理的数值模拟分析[D];第四军医大学;2016年
6 沈浩岚;网球拍减震器对正手击球效果与持拍手臂冲击载荷的影响[D];北京体育大学;2016年
7 于博洋;冲击载荷下附件传动系统动力学及疲劳特性研究[D];沈阳工业大学;2017年
8 张昌爱;网球正手击球的不同移动方式对下肢冲击载荷的影响[D];北京体育大学;2017年
9 王怡月;双层壳体在冲击载荷作用下的动力响应分析[D];西南交通大学;2007年
10 许卫群;冲击载荷作用下结构的动力响应分析[D];武汉理工大学;2004年
,本文编号:2201808
本文链接:https://www.wllwen.com/jiaoyulunwen/tylw/2201808.html