当前位置:主页 > 经济论文 > 电子商务论文 >

基于用户对项目属性偏好的协同过滤算法

发布时间:2018-03-07 05:15

  本文选题:电子商务 切入点:推荐系统 出处:《计算机工程与应用》2017年06期  论文类型:期刊论文


【摘要】:为了缓解用户项目评分矩阵数据的稀疏性,在传统的协同过滤项目评分矩阵的基础上,对项目的特征进行分析,引入项目特征矩阵,然后结合余弦相似性和基于用户对项目属性偏好相似性综合计算用户的相似性,并通过一个权值来控制两者的重要程度,提出了一种基于用户对项目属性偏好的协同过滤算法。研究结果表明余弦相似性和用户对项目属性偏好的用户相似性比重相等时,推荐系统的推荐质量最好;而且当评分矩阵越稀疏的时候,用户对项目属性偏好的用户相似性的比重越大越可以提高推荐质量;同时提出的基于用户对项目属性偏好的协同过滤算法在MAE值都要小于两种传统的协同过滤算法。
[Abstract]:In order to reduce the sparsity of user item scoring matrix data, based on the traditional collaborative filtering item score matrix, the feature of items is analyzed, and the item feature matrix is introduced. Then the similarity of users is calculated based on the similarity of cosine similarity and user preference for item attributes, and the importance of the two is controlled by a weight. A collaborative filtering algorithm based on user preference for item attributes is proposed. The results show that the recommendation quality of recommendation system is the best when the proportion of cosine similarity and user similarity to item attribute is equal. Moreover, when the score matrix is sparse, the higher the proportion of user similarity to item attributes is, the higher the recommendation quality can be. At the same time, the proposed collaborative filtering algorithm based on user preference for item attributes is smaller than the two traditional collaborative filtering algorithms in MAE value.
【作者单位】: 上海财经大学信息管理与工程学院;上海财经大学实验中心;
【基金】:国家自然科学基金(No.71271126)
【分类号】:TP391.3

【相似文献】

相关期刊论文 前10条

1 杨风召;;一种基于特征表的协同过滤算法[J];计算机工程与应用;2007年06期

2 王岚;翟正军;;基于时间加权的协同过滤算法[J];计算机应用;2007年09期

3 曾子明;张李义;;基于多属性决策和协同过滤的智能导购系统[J];武汉大学学报(工学版);2008年02期

4 张富国;;用户多兴趣下基于信任的协同过滤算法研究[J];小型微型计算机系统;2008年08期

5 侯翠琴;焦李成;张文革;;一种压缩稀疏用户评分矩阵的协同过滤算法[J];西安电子科技大学学报;2009年04期

6 廖新考;;基于用户特征和项目属性的混合协同过滤推荐[J];福建电脑;2010年07期

7 沈磊;周一民;李舟军;;基于心理学模型的协同过滤推荐方法[J];计算机工程;2010年20期

8 徐红;彭黎;郭艾寅;徐云剑;;基于用户多兴趣的协同过滤策略改进研究[J];计算机技术与发展;2011年04期

9 焦晨斌;王世卿;;基于模型填充的混合协同过滤算法[J];微计算机信息;2011年11期

10 郑婕;鲍海琴;;基于协同过滤推荐技术的个性化网络教学平台研究[J];科技风;2012年06期

相关会议论文 前10条

1 沈杰峰;杜亚军;唐俊;;一种基于项目分类的协同过滤算法[A];第二十二届中国数据库学术会议论文集(技术报告篇)[C];2005年

2 周军锋;汤显;郭景峰;;一种优化的协同过滤推荐算法[A];第二十一届中国数据库学术会议论文集(研究报告篇)[C];2004年

3 董全德;;基于双信息源的协同过滤算法研究[A];全国第20届计算机技术与应用学术会议(CACIS·2009)暨全国第1届安全关键技术与应用学术会议论文集(上册)[C];2009年

4 张光卫;康建初;李鹤松;刘常昱;李德毅;;面向场景的协同过滤推荐算法[A];中国系统仿真学会第五次全国会员代表大会暨2006年全国学术年会论文集[C];2006年

5 李建国;姚良超;汤庸;郭欢;;基于认知度的协同过滤推荐算法[A];第26届中国数据库学术会议论文集(B辑)[C];2009年

6 王明文;陶红亮;熊小勇;;双向聚类迭代的协同过滤推荐算法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年

7 胡必云;李舟军;王君;;基于心理测量学的协同过滤相似度方法(英文)[A];NDBC2010第27届中国数据库学术会议论文集(B辑)[C];2010年

8 林丽冰;师瑞峰;周一民;李月雷;;基于双聚类的协同过滤推荐算法[A];2008'中国信息技术与应用学术论坛论文集(一)[C];2008年

9 罗喜军;王韬丞;杜小勇;刘红岩;何军;;基于类别的推荐——一种解决协同推荐中冷启动问题的方法[A];第二十四届中国数据库学术会议论文集(研究报告篇)[C];2007年

10 黄创光;印鉴;汪静;刘玉葆;王甲海;;不确定近邻的协同过滤推荐算法[A];NDBC2010第27届中国数据库学术会议论文集A辑一[C];2010年

相关博士学位论文 前10条

1 纪科;融合上下文信息的混合协同过滤推荐算法研究[D];北京交通大学;2016年

2 程殿虎;基于协同过滤的社会网络推荐系统关键技术研究[D];中国海洋大学;2015年

3 于程远;基于QoS的Web服务推荐技术研究[D];上海交通大学;2015年

4 李聪;电子商务推荐系统中协同过滤瓶颈问题研究[D];合肥工业大学;2009年

5 郭艳红;推荐系统的协同过滤算法与应用研究[D];大连理工大学;2008年

6 罗恒;基于协同过滤视角的受限玻尔兹曼机研究[D];上海交通大学;2011年

7 薛福亮;电子商务协同过滤推荐质量影响因素及其改进机制研究[D];天津大学;2012年

8 高e,

本文编号:1578078


资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/1578078.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a490e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com