当前位置:主页 > 经济论文 > 电子商务论文 >

基于多尺度深度学习的商品图像检索

发布时间:2018-04-30 21:19

  本文选题:商品图像检索 + 深度学习 ; 参考:《计算机研究与发展》2017年08期


【摘要】:商品图像检索的目标是检索与图像内容相符的商品,它是移动视觉搜索在电子商务中的重要应用.商品图像检索的发展,既为用户购物提供便利,又促进了电子商务向移动端发展.图像特征是影响商品图片检索性能的重要因素.复杂的图片背景、同类商品之间的相似性和被拍摄商品尺度的变化,都使得商品图像检索对图像特征提出了更高的要求.提出了一种多尺度深度神经网络,以便于抽取对复杂图片背景和目标物体尺度变化更加鲁棒的图像特征.同时根据商品类别标注信息学习图片之间的相似度.针对在线服务对响应速度的要求,通过压缩模型的深度和宽度控制了计算开销.在一个百万级的商品图片数据集上的对比实验证明:该方法在保持速度的同时提升了查询的准确率.
[Abstract]:The goal of commodity image retrieval is to retrieve goods which are consistent with the content of the image. It is an important application of mobile visual search in electronic commerce. The development of the commodity image retrieval not only provides convenience for the user shopping, but also promotes the development of e-commerce to the mobile terminal. The image feature is an important factor affecting the performance of commodity image retrieval. The image background, the similarity between the same commodities and the changes in the scale of the goods taken, all make the image retrieval of the commodity higher requirements for the image features. A multi-scale deep neural network is proposed to facilitate the extraction of more robust image features of the complex picture background and the target object scale. Do not mark the similarity between the information learning pictures. In view of the demand for the response speed of the online service, the computing overhead is controlled by the depth and width of the compression model. A comparison experiment on a million level commodity picture data set shows that the method raises the accuracy of the query while maintaining the speed.

【作者单位】: 复旦大学计算机科学技术学院;上海市智能信息处理重点实验室;
【基金】:国家自然科学基金项目(61673118) 上海市浦江人才计划项目(16PJD009)~~
【分类号】:TP391.41

【参考文献】

相关期刊论文 前1条

1 蒋树强;闵巍庆;王树徽;;面向智能交互的图像识别技术综述与展望[J];计算机研究与发展;2016年01期

【相似文献】

相关期刊论文 前10条

1 韩法旺;;基于云计算模式的图像检索研究[J];情报科学;2011年10期

2 何岩;;以计算机为基础的色彩图像检索方法与研究[J];计算机光盘软件与应用;2013年12期

3 郭海凤;李广水;仇彬任;;基于融合多特征的社会网上图像检索方法[J];计算机与现代化;2013年12期

4 柏正尧,周纪勤;基于复数矩不变性的图像检索方法研究[J];计算机应用;2000年10期

5 夏峰,张文龙;一种图像检索的新方法[J];计算机应用研究;2002年11期

6 邓诚强,冯刚;基于内容的多特征综合图像检索[J];计算机应用;2003年07期

7 斯白露,高文,卢汉清,曾炜,段立娟;基于感兴趣区域的图像检索方法[J];高技术通讯;2003年05期

8 刘怡,于沛;基于“知网”的新闻图像检索方法[J];河南师范大学学报(自然科学版);2003年02期

9 张荣,郑浩然,李金龙,王煦法;进化加速技术在图像检索中的应用[J];计算机工程与应用;2004年16期

10 黄德才,胡嘉,郑月锋;交互式图像检索中相关反馈进展研究[J];计算机应用研究;2005年09期

相关会议论文 前10条

1 陈旭文;朱红丽;;一种高效的图像检索方法[A];中国仪器仪表学会第九届青年学术会议论文集[C];2007年

2 周向东;张亮;张琪;刘莉;殷慷;施伯乐;;一种新的图像检索相关反馈方法[A];第十九届全国数据库学术会议论文集(研究报告篇)[C];2002年

3 陈世亮;李战怀;闫剑锋;;一种基于本体描述的空间语义图像检索方法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年

4 赵海英;彭宏;;基于最优近似反馈的图像检索[A];’2004系统仿真技术及其应用学术交流会论文集[C];2004年

5 许相莉;张利彪;于哲舟;周春光;;基于商空间粒度计算的图像检索[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年

6 李凌伟;周荣贵;刘怡;;基于概念的图像检索方法[A];第十九届全国数据库学术会议论文集(技术报告篇)[C];2002年

7 杨关良;李忠杰;徐小杰;;基于代表色的图像检索方法研究[A];首届信息获取与处理学术会议论文集[C];2003年

8 彭瑜;乔奇峰;魏昆娟;;基于多示例学习的图像检索方法[A];第三届全国信息检索与内容安全学术会议论文集[C];2007年

9 胡敬;武港山;;基于语义特征的风景图像检索[A];2009年研究生学术交流会通信与信息技术论文集[C];2009年

10 许天兵;;一种基于语义分类的图像检索方法[A];中国图象图形学会第十届全国图像图形学术会议(CIG’2001)和第一届全国虚拟现实技术研讨会(CVR’2001)论文集[C];2001年

相关博士学位论文 前10条

1 崔超然;图像检索中自动标注、标签处理和重排序问题的研究[D];山东大学;2015年

2 杨迪;基于内容的分布式图像检索[D];北京邮电大学;2015年

3 张旭;网络图像检索关键技术研究[D];西安电子科技大学;2014年

4 吴梦麟;基于半监督学习的医学图像检索研究[D];南京理工大学;2015年

5 高毫林;基于哈希技术的图像检索研究[D];解放军信息工程大学;2014年

6 李清亮;图像检索中判别性增强研究[D];吉林大学;2016年

7 刘爽;多特征融合图像检索方法及其应用研究[D];哈尔滨理工大学;2016年

8 程航;密文JPEG图像检索研究[D];上海大学;2016年

9 李强;基于语义理解的图像检索研究[D];天津大学;2015年

10 李展;基于多示例学习的图像检索与推荐相关算法研究[D];西北大学;2012年

相关硕士学位论文 前10条

1 赵鸿;基于尺度不变局部特征的图像检索研究[D];华南理工大学;2015年

2 孙剑飞;基于图像索引的热点话题检索方法研究[D];兰州大学;2015年

3 章进洲;图像检索中的用户意图分析[D];南京理工大学;2015年

4 苗思杨;移动图像检索中的渐进式传输方式研究[D];大连海事大学;2015年

5 都业刚;基于显著性的移动图像检索[D];大连海事大学;2015年

6 王梦蕾;基于用户反馈和改进词袋模型的图像检索[D];南京理工大学;2015年

7 许鹏飞;基于草图的海量图像检索方法研究[D];浙江大学;2015年

8 冯进丽;基于BoF的图像检索与行为识别研究[D];山西大学;2015年

9 乔维强;基于低级特征和语义特征的医学图像检索[D];北京理工大学;2015年

10 蒋国宝;基于内容的概念建模和图像检索重排序[D];复旦大学;2014年



本文编号:1826276

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/1826276.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户928ee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com