基于条件相对平均熵的个性化推荐算法研究与应用
[Abstract]:With the popularity of the Internet and the rapid development of electronic commerce, network transactions are becoming more and more popular, and more commodities are changing from real transactions to virtual transactions, which leads to the rapid growth of data types and data volume of information resources. It promotes the research and development of e-commerce personalized recommendation. At present, the core idea of E-commerce recommendation is based on a variety of related relationships, such as user relations, commodity relations, the relationship between users and commodities. However, when there is no or little consumer behavior data, or when users have fewer common choices, or when a commodity is not in the historical behavior data, the correlation will be lacking or insufficient, leading to the inability to predict by similarity. The problem of data sparsity or cold start reduces the accuracy of recommendation, and it is difficult to provide recommendation services to users properly. In addition, the consumer's consumption preference and characteristics have an important influence on the consumer behavior. When the utility of the commodity is in line with the consumer's consumption character, the user may have the consumer behavior. This provides a new perspective for the personalized recommendation of e-commerce. Therefore, how to reduce or eliminate the above problems, from the mass of consumer behavior data mining users interested or need goods, and accurately recommend to the target users, has become the focus of research on personalized recommendation. The main work of this paper is as follows: (1) the personalized recommendation algorithm and the discovery algorithm of complex network community structure and their characteristics are analyzed in detail. (2) considering the demand for accuracy of the current personalized recommendation system, the representative CNM personalized recommendation algorithm is selected. The CNM algorithm is optimized and verified by introducing point weight and edge weight distance similarity formula. (3) based on the analysis of consumer character, conditional mutual information and conditional relative average entropy are introduced to obtain the initial node input order in K2 algorithm. Then we use CH score function and posteriori probability function to study Bayesian network and analyze the consumer character of user. (4) using the well-learned Bayesian network to reason to judge the relationship between the products of the user to recommend domain and the consumer character. Finally, the final commodity recommendation domain is obtained. (5) the requirement analysis and system design of telecom idle assets market-oriented trading system are given, and the research results of this paper are applied to the asset recommendation module of the system.
【学位授予单位】:南昌大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.3
【相似文献】
相关期刊论文 前10条
1 徐义峰;徐云青;刘晓平;;一种基于时间序列性的推荐算法[J];计算机系统应用;2006年10期
2 余小鹏;;一种基于多层关联规则的推荐算法研究[J];计算机应用;2007年06期
3 张海玉;刘志都;杨彩;贾松浩;;基于页面聚类的推荐算法的改进[J];计算机应用与软件;2008年09期
4 张立燕;;一种基于用户事务模式的推荐算法[J];福建电脑;2009年03期
5 王晗;夏自谦;;基于蚁群算法和浏览路径的推荐算法研究[J];中国科技信息;2009年07期
6 周珊丹;周兴社;王海鹏;倪红波;张桂英;苗强;;智能博物馆环境下的个性化推荐算法[J];计算机工程与应用;2010年19期
7 王文;;个性化推荐算法研究[J];电脑知识与技术;2010年16期
8 张恺;秦亮曦;宁朝波;李文阁;;改进评价估计的混合推荐算法研究[J];微计算机信息;2010年36期
9 夏秀峰;代沁;丛丽晖;;用户显意识下的多重态度个性化推荐算法[J];计算机工程与应用;2011年16期
10 杨博;赵鹏飞;;推荐算法综述[J];山西大学学报(自然科学版);2011年03期
相关会议论文 前10条
1 王韬丞;罗喜军;杜小勇;;基于层次的推荐:一种新的个性化推荐算法[A];第二十四届中国数据库学术会议论文集(技术报告篇)[C];2007年
2 唐灿;;基于模糊用户心理模式的个性化推荐算法[A];2008年计算机应用技术交流会论文集[C];2008年
3 秦国;杜小勇;;基于用户层次信息的协同推荐算法[A];第二十一届中国数据库学术会议论文集(技术报告篇)[C];2004年
4 周玉妮;郑会颂;;基于浏览路径选择的蚁群推荐算法:用于移动商务个性化推荐系统[A];社会经济发展转型与系统工程——中国系统工程学会第17届学术年会论文集[C];2012年
5 苏日启;胡皓;汪秉宏;;基于网络的含时推荐算法[A];第五届全国复杂网络学术会议论文(摘要)汇集[C];2009年
6 梁莘q,
本文编号:2205547
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2205547.html