基于Spark的蜜罐系统的设计与实现
[Abstract]:With the rapid development of Internet, E-commerce and E-government technology, the convenience of life has attracted a large number of attacks. How to effectively protect the security of large Internet sites has become a research hotspot. Most of the existing security defense technologies are passive defense technologies, which have the disadvantage of lagging measures. Honeypot technology, as an active defense technology, introduces the decoy technology into the security field, which can actively attract attacks and collect and analyze attacks. According to the analysis results, the defenses of the protected system are advanced in advance, which effectively solves the deficiency of the passive defense technology. Secondly, the amount of log information generated by users' inquiries and transactions is greatly increased, and the common data analysis technology is easy to cause problems such as delay protection. Using big data processing technology will reduce processing delay and improve the efficiency of protection. Firstly, this paper analyzes the present situation of website security defense, applies honeypot technology to website security defense, and realizes the active defense of website. Secondly, aiming at the problem of the delay of the common data processing technology, the Spark big data processing technology will be introduced into the system, which will improve the efficiency of data analysis. The architecture of the system is as follows: on the basis of the local area network and cloud platform, four virtual machines are created, two of which are used as protected systems and honeypots, one as fortress machine to redirect, and one as the platform of big data. When the user visits, the IP address is resolved on the DNS server based on the domain name entered, and then the user accesses the fortress machine based on the parsing results. The bastion machine makes use of the Iptables log function to capture the data, the Spark data processing center calls the captured data for real-time analysis, according to the established rules to find out the potential threat users, fortress opportunity to redirect the user according to the analysis results. When the user is threatened, redirect to the honeypot or link it to the protected system. Furthermore, the system uses multiple layers of security to ensure that honeypots are not captured by illegal visitors and used to attack other systems. Finally, the simulation of the system from the honeypot, the availability of the system and the performance of the data analysis module are tested. Experiments and tests show that this design uses big data technology to analyze log files, which improves the processing speed of information and the efficiency of system protection, and prolongs the retention time of illegal visitors in honeypot system with the same website system. It achieves the purpose of collecting more information of illegal visitors and facilitating future analysis and research.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP393.08
【参考文献】
相关期刊论文 前10条
1 王榕国;;ARP欺骗网络安全研究[J];信息通信;2017年01期
2 李秀娟;;探析网络主动防御系统的设计与实现[J];电子设计工程;2017年01期
3 董永明;浦志岗;;计算机网络防火墙的安全设计与实现[J];电子设计工程;2016年22期
4 张骏;;Honeypot中数据捕获的设计与实现[J];网络安全技术与应用;2016年11期
5 孔庆春;;基于Spark大数据平台日志审计系统的设计与实现[J];电脑知识与技术;2016年15期
6 崔嘉;;蜜罐技术用于网络安全的分析与研究[J];网络空间安全;2016年06期
7 王艳;;大数据时代网络安全主动防御系统应用与设计[J];湖北函授大学学报;2016年09期
8 马小雨;;防火墙和IDS联动技术在网络安全管理中的有效应用[J];现代电子技术;2016年02期
9 陈阳;;基于蜜罐的网站安全防御系统的设计[J];价值工程;2016年01期
10 汶向东;;基于蜜罐技术的电子政务安全系统的研究与设计[J];微型电脑应用;2015年10期
相关硕士学位论文 前10条
1 张超;WEB网站安全检测系统设计与实现[D];东南大学;2015年
2 杨朋;基于Hadoop的网络节点行为分析[D];北京邮电大学;2015年
3 周昆;一种基于Honeyd的过程控制蜜罐系统的平台搭建研究[D];华东理工大学;2015年
4 张龙生;虚拟蜜罐网关键技术研究与实现[D];北京邮电大学;2015年
5 许雯;基于分布式蜜罐的云端安全机制研究[D];江苏科技大学;2014年
6 吕峰;基于Hadoop海量数据微博系统的设计与实现[D];北京工业大学;2013年
7 陈颢;蜜罐技术在网络安全中的设计与应用[D];电子科技大学;2012年
8 王龙江;基于蜜网技术的校园网安全系统的研究与实现[D];安徽大学;2011年
9 何荣波;MapReduce模型在Hadoop中的性能优化及改进[D];北京化工大学;2011年
10 徐明明;蜜罐技术在网络安全中应用研究[D];南京信息工程大学;2011年
,本文编号:2275733
本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2275733.html