当前位置:主页 > 经济论文 > 电子商务论文 >

基于多特征索引的服饰检索和后验证过程

发布时间:2019-03-26 13:27
【摘要】:随着电子商务的快速发展,新兴的网上购物模式已经慢慢的的取代传统的实体店购物模式。尤其体现在选购服装的方面上,网上购物比起去实体店来回奔走的选购更加的体现出其优势来。我们只需通过点击鼠标,就可以实现足不出户就能够在网络上浏览各式各样的服装同时在海量的服饰中挑选出自己喜欢的服饰来。但是现如今的各大购物网站在服饰搜索上大部分都是基于产品的标签的形式来检索的,即通过事先对服饰加入标签,检索的时候通过关键字对服饰进行检索。由于在语言描述方面上存在着很大的主观差异性,同时对于我们在大街上看到别人穿的漂亮的服饰或者电影电视上或者网络上看到我们喜欢的服饰时,我们想要在网上找到相类似的服饰时,我们不可能描绘的那么准确,进而搜索出来与之相同款式的服装。所以设计一个通过目标图像来检索相似图像的系统就显得格外的重要,人们只需要把想要查询的服饰图像输入就可以很精确的检索出来相类似的服饰。本文提出了基于多特征索引的服饰检索和后验证过程,通过实验结果可以看到在大量的图像库中该方法体现出来了一个很好的准确度。文章主要是由如下四部分组成:(1)第一部分工作是对图像进行预处理阶段通过SMQT特征和SNOW分类器实现人脸检测。当输入一幅查询图像的时候,通过实现人脸检测的方法,图像中人脸的位置会被检测出来。然后知道了人脸的位置后就能大致的确定服饰的位置。当我们判断出输入图像中服饰的位置后由Grab Cut算法对图像进行分割得到图像中服饰的区域。图像经过预处理之后只保留了原图像中的服饰区域。(2)在传统的BOW检索框架,我们加入了颜色描述符(CN),增强了颜色特征的匹配。同时将sift特征和颜色特征加入到二重多维索引的框架中进行特征的匹配。(3)针对BOW模型量化后的视觉单词降低了局部区域的辨别能力同时也不具备特征间的几何关系,所以我们提出了基于特征尺度的几何后验证方法来验证错误的匹配特征。这种后验证方法是根据特征之间的几个关系来去除误匹配点从而对于候选图像进行重新打分的过程。(4)通过实验来验证我们提出的方法并且横向的比较在检索框架中每进行的改进对实验精确度的影响。实验结果可以得出在大量的图像的数据库我们的方法取得了很好的效果。
[Abstract]:With the rapid development of e-commerce, the new online shopping mode has slowly replaced the traditional physical shop shopping mode. Especially reflected in the selection and purchase of clothing, online shopping compared to physical stores to go back and forth shopping more reflected its advantages. By clicking on the mouse, we can make it possible to browse all kinds of clothing on the Internet and pick out the clothes we like from the vast amount of clothing. But nowadays, most of the shopping websites are based on the form of product labels, that is, by adding labels to the clothing in advance, and searching the clothing by keywords. Because there are a lot of subjective differences in language description, and when we see other people's beautiful clothes on the street, or when we see our favorite clothes on movies, television, or the Internet, When we want to find similar clothing on the Internet, we can't describe it as accurately as we can, and then search for the same style of clothing. So it is very important to design a system to retrieve similar images by target images. People only need to input the clothing images they want to query and then they can retrieve the similar clothing accurately. This paper presents a multi-feature index-based clothing retrieval and post-verification process. The experimental results show that this method has a good accuracy in a large number of image databases. This paper mainly consists of the following four parts: (1) the first part of the work is to pre-process the image through SMQT features and SNOW classifier to achieve face detection. When a query image is inputted, the position of the face in the image will be detected by the method of face detection. Then know the location of the face will be able to roughly determine the location of the dress. When we determine the position of the dress in the input image, the Grab Cut algorithm is used to segment the image to get the region of the dress in the image. After pre-processing, only the dress regions in the original image are preserved. (2) in the traditional BOW retrieval framework, we add the color descriptor (CN), to enhance the matching of the color features. At the same time, the sift feature and color feature are added to the frame of double multi-dimensional index to match the features. (3) aiming at the quantized visual words of BOW model, the discrimination ability of local region is reduced and the geometric relationship between features is not possessed. Therefore, we propose a geometric post-verification method based on feature scale to verify the wrong matching features. This post-validation method is a process of removing mismatched points and re-scoring candidate images according to several relations between features. (4) the proposed method is verified by experiments and the horizontal comparison between the proposed method and the cross-sectional comparison in the detection process is carried out. The effect of each improvement in the cable frame on the accuracy of the experiment. Experimental results can be obtained in a large number of images in the database of our method has achieved good results.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41

【相似文献】

相关期刊论文 前10条

1 陈芳;一种基于错切原理的图像旋转方法[J];淮阴师范学院学报(自然科学版);2004年04期

2 李少芳;陈德礼;;数字图像旋转实现的探讨[J];计算机与现代化;2007年09期

3 李峰;;交互式、可控制图像旋转[J];电脑编程技巧与维护;2008年09期

4 赵琰;魏为民;;用于图像认证和窜改检测的稳健图像摘要[J];计算机应用研究;2011年05期

5 王滨海;许正飞;陈西广;张海龙;邵瑞雪;;图像旋转算法的分析与对比[J];光学与光电技术;2011年02期

6 陶德元,李舒平,周激流;消除图像旋转失真的方法[J];数据采集与处理;1991年04期

7 李伟青;图像旋转的快速显示技术[J];计算机应用研究;1994年03期

8 沈定刚,戚飞虎;任意图像的主方向定位[J];上海交通大学学报;1995年04期

9 曹建;变换图像及与其它图像程序的结合使用技术[J];软件世界;1996年06期

10 丁宏庆;数字图像旋转的硬件实现[J];电子技术;1998年12期

相关会议论文 前4条

1 鲁传运;黄言平;季托;;图像旋转不变特征特性研究[A];第九届全国光电技术学术交流会论文集(下册)[C];2010年

2 唐振军;王朔中;魏为民;张新鹏;;利用分块相似系数构造感知图像Hash[A];第八届全国信息隐藏与多媒体安全学术大会湖南省计算机学会第十一届学术年会论文集[C];2009年

3 王彦锟;刘方;;一种快速稳健的图像旋转角度估计算法[A];计算机技术与应用进展·2007——全国第18届计算机技术与应用(CACIS)学术会议论文集[C];2007年

4 王炳健;楼红斌;卢刚;刘上乾;;多模光电图像配准算法性能评估[A];2011西部光子学学术会议论文摘要集[C];2011年

相关重要报纸文章 前3条

1 奇妙天堂;PowerPoint XP玩转图象轻松做[N];中国电脑教育报;2003年

2 晓峰;EPC图像转换专家:批量转换的得力助手[N];中国摄影报;2005年

3 小鸭;扫描一点通[N];电脑报;2001年

相关博士学位论文 前4条

1 谢博捚;图像特征表示的学习算法研究[D];北京交通大学;2016年

2 林春雨;图像/视频的多描述编码及传输[D];北京交通大学;2010年

3 高光勇;基于混沌和图像矩的鲁棒零水印技术研究[D];南京邮电大学;2012年

4 李长松;空间太阳望远镜稳像系统中图像相关器的研究[D];中国科学院研究生院(国家天文台);2008年

相关硕士学位论文 前10条

1 刘霞;基于尺度不变与视觉显著特征的图像感知哈希技术研究[D];西南大学;2015年

2 史力如;图像与思维及重叠图像式绘画的探索[D];天津美术学院;2015年

3 王开芳;照片/素描及跨年龄阶段异质人脸的识别研究[D];山东大学;2015年

4 董爱萍;小尺度图像旋转失真分析与矫正方法研究[D];大连海事大学;2015年

5 袁征帆;基于安卓的火车客票管理系统的设计与实现[D];南京大学;2014年

6 黄韵;基于词袋模型和词汇树的图像检索技术研究[D];西安电子科技大学;2014年

7 王东旭;基于快速检索的图像溯源软件平台[D];西安电子科技大学;2014年

8 黄德志;基于改进局部二值模式的图像分类算法研究[D];吉林大学;2016年

9 汤寰宇;基于多特征索引的服饰检索和后验证过程[D];吉林大学;2016年

10 孙洁;基于隐支持向量机模型的个性化图像推荐和检索[D];北京交通大学;2014年



本文编号:2447589

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/dianzishangwulunwen/2447589.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户490f3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com