当前位置:主页 > 经济论文 > 工业经济论文 >

基于人工神经网络的煤化工项目风险评价研究

发布时间:2018-10-17 14:04
【摘要】:在国际油价动荡及替代能源需求加大的形势下,我国煤化工产业依靠明显优势不断发展,已经成为我国能源产业的重要组成部分。随着近阶段国家政策的引导,传统煤化工项目不断转型升级,特别是新型煤化工项目掀起建设热潮,并逐渐成为煤化工产业的发展重点。煤化工产业是资源、技术、资金密集型产业,同时对环境、安全和社会配套等条件要求较高,对此类项目进行风险评价是项目成功的重要保证,对实现煤化工产业转型升级、保障国家能源安全及国民经济的可持续发展均具有重大意义。 本文主要的研究如下:首先梳理风险管理相关文献研究及项目风险管理理论,对常用风险评价技术进行分析及对比,介绍了人工神经网络理论及其在风险评价方面的突出优势。其次分析煤化工项目现状及其风险特点,结合专家意见,,从社会环境、技术、经济、管理及自然五大方面对煤化工项目进行风险识别,进而建立了由22个典型风险源构成的煤化工项目风险评价指标体系。再次,结合专家打分法,运用人工神经网络对煤化工项目风险评价进行实证分析,构建了煤化工项目风险评价的神经网络模型。最后利用所建立的神经网络模型对案例项目进行风险评价,得出其综合风险水平,并依据风险评价指标体系对各风险因素进行了分析评价。本文的实证研究结果表明,利用人工神经网络对煤化工项目进行风险评价是可行的,本文所建的神经网络模型可以有效地对煤化工项目进行风险评价并最终得出项目的综合风险水平。
[Abstract]:Under the situation of the turbulence of international oil price and the increasing demand for alternative energy, the coal chemical industry of our country has been developing continuously depending on its obvious advantages, and has become an important part of the energy industry of our country. With the guidance of the national policy in recent stage, the traditional coal chemical engineering projects have been continuously transformed and upgraded, especially the new coal chemical engineering projects have set off a construction upsurge, and gradually become the focus of the development of coal chemical industry. The coal chemical industry is a resource, technology, capital intensive industry, at the same time the environment, safety and social supporting conditions are high, the risk evaluation of such projects is an important guarantee for the success of the project, to achieve the transformation and upgrading of the coal chemical industry. It is of great significance to ensure the national energy security and the sustainable development of the national economy. The main research of this paper is as follows: firstly, this paper combs the risk management related literature research and the project risk management theory, analyzes and compares the common risk assessment technology, introduces the artificial neural network theory and its outstanding advantage in the risk evaluation. Secondly, it analyzes the present situation of coal chemical project and its risk characteristics, combines the expert opinion, carries on the risk identification to the coal chemical project from the social environment, the technology, the economy, the management and the nature five aspects. Furthermore, the risk evaluation index system of coal chemical engineering project is established, which is composed of 22 typical risk sources. Thirdly, combining the expert scoring method, using artificial neural network to carry on the empirical analysis to the coal chemical engineering project risk evaluation, constructed the coal chemical industry project risk evaluation neural network model. Finally, the comprehensive risk level of the case project is obtained by using the established neural network model, and the risk factors are analyzed and evaluated according to the risk evaluation index system. The empirical results of this paper show that it is feasible to use artificial neural network to evaluate the risk of coal chemical projects. The neural network model established in this paper can effectively evaluate the risk of coal chemical engineering project and finally obtain the comprehensive risk level of the project.
【学位授予单位】:中北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TP183;F426.722

【参考文献】

相关期刊论文 前10条

1 王彦彪;郭晓静;;煤化工项目实施环境风险评价的探讨[J];安防科技;2012年02期

2 王欣;贾元华;马晓飞;;基于三层委托代理模型及BP算法的国家科技计划项目风险评价[J];北京交通大学学报;2012年03期

3 陈辉,李双成,郑度;基于人工神经网络的青藏公路铁路沿线生态系统风险研究[J];北京大学学报(自然科学版);2005年04期

4 王新利;;模糊综合评价法在项目投资决策中的运用[J];财会月刊;2009年06期

5 汪金福;廖洁;;化工项目环境风险模糊识别方法研究[J];环境科学与技术;2007年07期

6 李铁军;刘志斌;刘浩瀚;;一种基于模糊熵的油田经营风险评价法[J];工程数学学报;2012年02期

7 朱敬涛,赵文超,窦立宝,王伟红;道(DOW)化学指数法在环境风险评价中的应用[J];甘肃环境研究与监测;2003年03期

8 陈建宏;胡敏;肖诚;鲁忠华;;基于模糊人工神经网络的金属矿山投资风险评价[J];广西大学学报(自然科学版);2011年06期

9 于芳;蒋军成;张明广;关文玲;;基于连锁效应化工储罐区火灾爆炸定量风险评价[J];工业安全与环保;2011年09期

10 池红卫,王为民;化工项目投资风险评价方法的研究[J];石家庄经济学院学报;2004年01期

相关硕士学位论文 前4条

1 顾连胜;大型工程投资决策中风险管理的理论与应用研究[D];西安建筑科技大学;2004年

2 张军;灰色预测模型的改进及其应用[D];西安理工大学;2008年

3 安雪彤;基于G-ANP方法的大型化工项目风险评价研究与应用[D];重庆大学;2010年

4 李友坤;BP神经网络的研究分析及改进应用[D];安徽理工大学;2012年



本文编号:2276901

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/gongyejingjilunwen/2276901.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6e443***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com