当前位置:主页 > 经济论文 > 工业经济论文 >

基于机器学习的智能电网实时电价研究

发布时间:2017-05-23 16:05

  本文关键词:基于机器学习的智能电网实时电价研究,,由笔耕文化传播整理发布。


【摘要】:随着经济与社会的发展,电力产业不断贯穿于各个领域,电力需求量不断增加,给电网的稳定运行等相关工作带来了极大的挑战。而数字化与智能化电网的快速发展使得大量的电网历史运行数据和实时运行数据被获取,机器学习技术能够更好地获取系统隐含的信息。基于需求响应(Demand Response,DR)的实时电价(Real-time Pricing,RTP)策略,是实现智能电网有效性与可靠性的关键技术之一,是促进电力消费结构的合理化、实现用户需求消峰填谷的有效方法。节点边际电价(Locational marginal price,LMP),作为科学的电力市场调节机制的实时电价策略,广泛应用于电力日前市场与实时市场中。本文基于美国PJM电力市场的真实用电数据,分析用户对电价的响应,实现在LMP电价背景下,智能电网电力市场中供需双方相互博弈的实时电价模型。建立LMP定价预测模型。从电力系统结构出发,采用自编码(autoencoder)的无监督学习方式训练网络,模拟复杂平衡电网,进而构造LMP定价预测模型。以美国PJM电力市场的电力数据为例,对模型进行检验,并与无特征学习的传统BP模型定价及实际电力市场的日前实时电价(day-ahead real time pricing)相比较,结果证明所提方法的合理性与可行性,表明了大规模的复杂电力网络可以通过构建深层的学习网络模型来模拟电网平衡状态,实现电价定价预测策略,进而制定实时电价。建立用户响应行为学习模型。基于用户的需求价格弹性(price elasticity of electricity demand,PED)模型,通过回归模型(regression model)学习需求价格弹性,模拟用户响应行为。实验表明,学习获得的用户价格弹性可以很好地实现用户响应行为的拟合,较传统的调查问卷方式获得固定的用户价格弹性,回归模型具有良好的时域性,更高效地实现用户响应行为的学习,为实时电价提供决策支持。建立博弈实时电价模型。在获得LMP电价预测模型及用户用电响应模型的基础上,通过博弈的方式,将电网的电价与用户的用电响应结合,建立博弈电价模型,制定智能电网电力市场中供需双方相互博弈的实时电价策略,提高消费者的满意程度,降低电力应用成本,进一步改善当今电网的使用现状,实现电力需求的削峰填谷。对企业赢得市场,减少生产成本,争取电能的生存和发展空间,提高智能电网的性能与核心竞争力,实现节能减排的可持续发展策略具有重要意义。
【关键词】:机器学习 实时电价 预测 需求价格弹性 博弈
【学位授予单位】:沈阳理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:F416.61;TP181
【目录】:
  • 摘要6-8
  • Abstract8-12
  • 第1章 绪论12-20
  • 1.1 研究背景及意义12-14
  • 1.2 国内外研究现状14-17
  • 1.3 本文主要的研究内容及创新点17-18
  • 1.4 本文的结构安排18-20
  • 第2章 实时电价及需求价格弹性20-28
  • 2.1 实时电价21-23
  • 2.2 需求价格弹性23-27
  • 2.2.1 单时段(自弹性)需求价格弹性模型25-27
  • 2.2.2 多时段(交叉弹性)需求价格弹性模型27
  • 2.3 本章小结27-28
  • 第3章 基于自编码的节点边际电价预测研究28-44
  • 3.1 节点边际电价研究现状28-29
  • 3.2 自编码算法概述29-31
  • 3.3 基于自编码的LMP预测算法及仿真实验31-43
  • 3.4 本章小结43-44
  • 第4章 实时电价下用户的用电响应行为研究44-53
  • 4.1 需求响应研究的现状44-46
  • 4.2 用户响应行为的回归模型46-49
  • 4.3 用户响应回归模型的仿真实验49-51
  • 4.4 本章小结51-53
  • 第5章 实时电价的博弈53-63
  • 5.1 博弈论概述53-55
  • 5.1.1 博弈论中的基本概念53-54
  • 5.1.2 博弈论在电价定价中的应用54-55
  • 5.2 实时电价的博弈模型55-62
  • 5.2.1 实时电价博弈模型的设计方案55-56
  • 5.2.2 实时电价博弈模型的应用及仿真验证56-62
  • 5.3 本章小结62-63
  • 结论63-65
  • 参考文献65-72
  • 攻读硕士学位期间发表的论文和获得的科研成果72-73

【参考文献】

中国期刊全文数据库 前7条

1 谢珍建;于乐;归三荣;李琥;韩俊;乔黎伟;赵宏大;;国外需求响应技术在主动配电网中的应用[J];电力需求侧管理;2015年02期

2 孙近文;万云飞;郑培文;林湘宁;;基于需求侧管理的电动汽车有序充放电策略[J];电工技术学报;2014年08期

3 陶小马;周雯;;电力需求响应的研究进展及文献述评[J];北京理工大学学报(社会科学版);2014年01期

4 孙志军;薛磊;许阳明;王正;;深度学习研究综述[J];计算机应用研究;2012年08期

5 谭忠富;谢品杰;王绵斌;张蓉;乞建勋;;提高电能使用效率的可中断电价与峰谷分时电价的联合优化设计[J];电工技术学报;2009年05期

6 刁勤华,林济铿,倪以信,陈寿孙;博弈论及其在电力市场中的应用[J];电力系统自动化;2001年02期

7 刁勤华,林济铿,倪以信,陈寿孙;博弈论及其在电力市场中的应用[J];电力系统自动化;2001年01期


  本文关键词:基于机器学习的智能电网实时电价研究,由笔耕文化传播整理发布。



本文编号:388407

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/gongyejingjilunwen/388407.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户13e86***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com