当前位置:主页 > 经济论文 > 国际贸易论文 >

BACT模型在P2P借款人信用风险评估中的应用

发布时间:2018-05-10 10:00

  本文选题:P2P网贷 + 信用风险 ; 参考:《广州大学》2017年硕士论文


【摘要】:P2P网络借贷,俗称P2P网贷,起步于英国.近年来,伴随着互联网技术的快速普及,P2P网贷在国内外发展特别迅速,呈现出各种各样的形式.P2P网贷属于小额借贷,投资门槛低,备受大众青睐,然而平台跑路、借款人违约等事件层出不穷,因而也得到广泛关注.本文以中国P2P网贷为研究对象,运用两种常用的机器学习方法和一种新的贝叶斯方法来评估网贷借款人的信用风险.这三种方法分别是:支持向量机(SVM)、随机森林(RF)以及贝叶斯可加分类树(BACT).首先将原始数据分成训练数据和测试数据,然后将训练数据等分成三份,称为原始训练集.考虑到数据存在类不平衡问题,故使用SMOTE算法对训练数据进行处理,以下将称这种数据为SMOTE训练集.其次分别以原始训练集、SMOTE训练集分别通过3折交叉验证,同时选取各模型对应参数.然后结合训练集、所选参数及模型对测试集进行建模、预测,进而比较不同训练数据集下训练所得模型之间的分类效果.最终发现,在使用SMOTE训练集来训练模型时,贝叶斯可加分类树和随机森林能够很好地识别违约的借款人,不过他们的AUC值没有显著变化,支持向量机的AUC值显著变大;贝叶斯可加分类树的分类准确率和AUC值都比随机森林、支持向量机大,其两类误分类率均比随机森林、支持向量机小;随机森林和贝叶斯可加分类树对应的ROC曲线明显位于支持向量机所对应ROC曲线的左上方,而随机森林对应的ROC曲线几乎与贝叶斯可加分类树对应的ROC曲线重合;这些都说明在SMOTE训练集下,贝叶斯可加分类树在评估借款人的信用风险方面具有很好的效果。
[Abstract]:P2P network lending, commonly known as P2P network loans, started in the United Kingdom. In recent years, with the rapid popularization of Internet technology, P2P network loans are developing rapidly at home and abroad, showing a variety of forms. P2P network loans are small loans, low investment barriers, popular favor, but the platform runs. Borrowers default and other events emerge in endlessly, and thus get widespread attention. In this paper, two commonly used machine learning methods and a new Bayesian method are used to evaluate the credit risk of Chinese P2P loan borrowers. The three methods are: support vector machine (SVM), random forest forest (RFF), and Bayes additive classification tree (BACTT). First, the raw data is divided into training data and test data, and then the training data is divided into three parts, called the original training set. Considering the class imbalance of the data, the SMOTE algorithm is used to process the training data, which will be called the SMOTE training set. Secondly, the original training set and the SMOTE training set are respectively verified by 3 fold cross-validation, and the corresponding parameters of each model are selected at the same time. Then the test set is modeled and predicted with the training set, the selected parameters and the model, and then the classification effect between the training models under different training data sets is compared. Finally, it is found that when using SMOTE training set to train the model, Bayes plus classification tree and random forest can identify the defaulting borrowers well, but their AUC value does not change significantly, and the AUC value of support vector machine increases significantly. The classification accuracy and AUC value of the Bayes additive classification tree are higher than those of the random forest, and the support vector machine (SVM) is larger than the random forest, and the misclassification rate of the two kinds of tree is smaller than that of the random forest, and the support vector machine (SVM) is smaller. The ROC curve of random forest and Bayes additive classification tree is obviously located at the upper left of the ROC curve corresponding to support vector machine, while the ROC curve of random forest almost coincides with ROC curve corresponding to Bayes additive classification tree. These results show that the Bayes additive classification tree is effective in assessing the credit risk of the borrower under SMOTE training set.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F832.4;F724.6

【参考文献】

相关期刊论文 前10条

1 高波;任若恩;;怎样识别P2P网贷问题平台[J];财会月刊;2017年05期

2 严复雷;李浩然;;P2P网贷平台信用风险影响因素分析[J];西南金融;2016年10期

3 王颖;梁婷;;组织中的权力分配与组织沉默——组织政治知觉的中介作用[J];经济管理;2016年06期

4 柳向东;李凤;;大数据背景下网络借贷的信用风险评估——以人人贷为例[J];统计与信息论坛;2016年05期

5 王丹;张洪潮;;P2P网贷平台信用风险评级模型构建[J];财会月刊;2016年09期

6 吕勇斌;姜艺伟;张小青;;我国P2P平台网络借贷逾期行为和羊群行为研究[J];统计与决策;2016年04期

7 王慧媛;;P2P网贷中借款年利率对借贷成功率影响的理论与实证研究——以人人贷为例[J];中国市场;2016年07期

8 姜培;宋良荣;;利率市场化背景下P2P网贷利率决定机制——基于“拍拍贷”经验数据的实证分析[J];财务与金融;2016年01期

9 于晓虹;楼文高;;基于随机森林的P2P网贷信用风险评价、预警与实证研究[J];金融理论与实践;2016年02期

10 李新功;刘扬帆;;我国P2P羊群效应形成机制与破解对策研究[J];征信;2015年12期

相关硕士学位论文 前7条

1 刘祖帆;盲目的借贷[D];西南财经大学;2016年

2 黄震;基于BP神经网络模型的中国P2P借款人信用风险评估研究[D];北京交通大学;2015年

3 王梦佳;基于Logistic回归模型的P2P网贷平台借款人信用风险评估[D];北京外国语大学;2015年

4 杨薇薇;P2P网络信贷行为及风险评估研究[D];中国海洋大学;2014年

5 邓兴文;基于BART算法的分类问题研究[D];华南理工大学;2014年

6 高瑞瑶;我国P2P网络借贷借款方风险分析与防范[D];中国社会科学院研究生院;2014年

7 郭阳;中国P2P小额贷款市场借贷成功率影响因素分析[D];天津大学;2012年



本文编号:1868860

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/guojimaoyilunwen/1868860.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e278f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com