普图马约盆地C油藏裂缝描述及数值模拟研究
发布时间:2018-01-17 19:35
本文关键词:普图马约盆地C油藏裂缝描述及数值模拟研究 出处:《中国地质大学(北京)》2016年博士论文 论文类型:学位论文
更多相关文章: 成像测井 裂缝描述 地质建模 油藏数值模拟 开发指标
【摘要】:普图马约盆地C油藏位于哥伦比亚东南部,为疏松含砾砂岩裂缝性稠油油藏,原油重度9.5oAPI。2011年11月开始试采,进行直井、水平井冷采及蒸汽吞吐的产油能力测试,由于裂缝发育的非均质性强,单井产能差异很大,目前采出程度仅有0.2%,为了经济有效地开发该油藏,开展本次研究。有很多地质因素会影响到裂缝的发育,而且,这些因素之间又相互作用,这样,就很难对裂缝的发育进行比较准确的描述和预测。本文大量调研了国内外的裂缝预测技术、裂缝储层建模、数植模拟以及其他的开发技术,在此基础上,利用成像测井、地震曲率属性、试井数据和泥浆漏失数据等分析C油藏裂缝的发育规律;分析地震曲率属性和井裂缝密度的关系,用地震属性做约束,从井出发进行反演,对裂缝密度空间分布规律进行预测;随后,建立裂缝模型与基质模型;分析流体性质和生产动态,进行油藏数值模拟研究,结合常规油藏工程研究,优选了适合C油藏的开发方式、井型、井网以及注采参数等,设计并优选了油藏开发方案。取得的创新性研究成果如下:1、采用全局优化扫描算法对地震同相轴进行高精度扫描,以此为基础计算出了高精度的地震曲率属性。多尺度地震曲率属性可以很好地定性预测C油藏的裂缝,高曲率与裂缝发育层段密切相关,而平面的曲率展布特征也与井裂缝走向密切相关。2、在裂缝密度反演时引入径向基函数神经网络技术,融合地质统计和神经网络技术,从而在地质统计和多属性驱动的基础上进行反演,这样既能得到稳定的反演结果,又能体现地震多属性对反演结果的非线性约束。3、以冷采和蒸汽吞吐理论为基础,对C油藏进行开发参数优选研究,设计4套以水平井为主的冷采方案,并在优选出的冷采方案中选择适合热采的井在适当时候转蒸汽吞吐。重新利用老井5口,部署新井22口,其中15口井转蒸汽吞吐,预计合同期末采收率可以达到12.8%,含水96.6%。研究成果在生产实践中取得了很好的应用效果,对今后此类油藏的研究和开发工作也具有比较强的借鉴意义。
[Abstract]:The C reservoir in Putumayo Basin is located in the southeast of Colombia. It is a fractured heavy oil reservoir with loose gravel sandstone. The crude oil heavy 9.5oAPI.2011 began to test production and carry on the vertical well in November. Due to the strong heterogeneity of fracture development and the difference of single well productivity, the production capacity of horizontal well is only 0.2cm, in order to develop the reservoir economically and effectively, the oil production capacity of horizontal well is tested by cold production and steam huff and puff, because of the strong heterogeneity of fracture development. There are many geological factors that affect the development of fractures, and these factors interact with each other. It is very difficult to describe and predict the development of fractures accurately. This paper has investigated a large number of domestic and foreign fracture prediction technology, fracture reservoir modeling, digital simulation and other development techniques, on this basis. Using imaging logging, seismic curvature attribute, well test data and mud leakage data to analyze the fracture development rule of C reservoir. The relationship between seismic curvature attribute and well fracture density is analyzed. Seismic attribute is used as constraint, inversion is carried out from well, and the spatial distribution law of fracture density is predicted. Then, the fracture model and matrix model are established. Analysis of fluid properties and production performance, reservoir numerical simulation research, combined with conventional reservoir engineering research, the optimal selection of C reservoir development mode, well type, well pattern and injection-production parameters, etc. The reservoir development scheme is designed and optimized. The innovative research results are as follows: 1. The global optimization scanning algorithm is used to scan the seismic cophase axis with high accuracy. Based on this, the high precision seismic curvature attribute is calculated. The multi-scale seismic curvature attribute can predict the fracture of C reservoir qualitatively, and the high curvature is closely related to the fracture development zone. The curvature distribution characteristics of the plane are also closely related to the well fracture strike. The radial basis function neural network technology is introduced in the inversion of fracture density, which combines geological statistics and neural network technology. The inversion is based on geostatistics and multi-attribute driving, which can not only obtain the stable inversion results, but also reflect the nonlinear constraint of seismic multi-attributes on the inversion results. 3. Based on the theory of cold production and steam huff and puff, the development parameters of C reservoir are optimized and four sets of cold recovery schemes are designed. At the same time, the wells suitable for thermal recovery should be converted to steam huff and puff at the right time. Five old wells were reused and 22 new wells were deployed, of which 15 wells were converted to steam huff and puff. It is expected that the recovery factor can reach 12.8 and the water content is 96.6. the research results have achieved good application effect in the production practice. It is also useful for future research and development of this kind of reservoir.
【学位授予单位】:中国地质大学(北京)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TE319
【参考文献】
相关期刊论文 前10条
1 徐维胜;龚彬;何川;秦关;;基于离散裂缝网络模型的储层裂缝建模[J];大庆石油学院学报;2011年03期
2 李建林;徐国盛;严维理;杨斌;周存俭;;川东沙罐坪气田石炭系储层裂缝识别与预测[J];天然气工业;2008年11期
3 王建华;;DFN模型裂缝建模新技术[J];断块油气田;2008年06期
4 周贤文;汤达帧;张春书;;精细油藏数值模拟研究现状及发展趋势[J];特种油气藏;2008年04期
5 蒲静;秦启荣;;油气储层裂缝预测方法综述[J];特种油气藏;2008年03期
6 赵为永;陈宏民;;常规测井与成像测井结合进行裂缝识别方法研究[J];青海石油;2008年02期
7 任殿星;李凡华;李保柱;;多条件约束油藏地质建模技术[J];石油勘探与开发;2008年02期
8 朱焱;谢进庄;杨为华;侯连华;;提高油藏数值模拟历史拟合精度的方法[J];石油勘探与开发;2008年02期
9 李勇;胡永乐;李保柱;姚军;;碳酸盐岩油藏三重介质油藏数值模拟研究[J];石油天然气学报;2008年02期
10 崔健;张军;王延民;;储层裂缝预测方法研究[J];重庆科技学院学报(自然科学版);2008年01期
,本文编号:1437697
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/1437697.html