当前位置:主页 > 经济论文 > 技术经济论文 >

插入式垂直轴涡轮光纤流量传感检测系统研究

发布时间:2018-06-25 15:58

  本文选题:流量检测 + 大管径管道 ; 参考:《东北电力大学》2017年硕士论文


【摘要】:流量检测在工业生产、科学实验以及经济核算中占有重要地位,是能源计量的重要组成部分。目前,大管径管道流量检测非常广泛,然而大多数流量计的安装需要截断管道,很多时候对工业生产造成不便。传统的插入式光纤流量计不仅可以实现不断管拆装,方便大管径管道的流量检测,还具有适用性强、抗干扰能力强等优点。但是,传统的设计将光纤探头置于管道内部,光纤检测对被测流体的清洁度要求较高,存在被测流体性质影响流量检测精度的问题。本文设计了一种插入式垂直轴涡轮光纤流量传感检测系统,改进了涡轮机构和反射式强度调制型光纤传感器(RIM-FOS),将光信号检测单元设计在管道上方,避免了光信号与流体的直接接触,解决了传统的插入式光纤流量计检测精度受流体清洁程度影响的问题。首先,本文通过UG软件建立管道及涡轮机构的三维模型,并设计了两种垂直轴涡轮。将两种模型导入ANSYS进行流体仿真,对比两种涡轮的仿真结果,根据仿真结果确定了一种更优化的涡轮机构,同时得到涡轮仿真系数k。通过CAXA软件绘制涡轮机构的工程图纸并进行实体加工。其次,通过MATLAB对RIM-FOS的光强调制函数仿真,得到光纤的实际参数参考值。采用光纤放大器作为RIM-FOS的光源装置及探测器,同轴光纤作为光纤探头。光信号由光纤放大器的光源装置发出经轮轴端面反射后由光纤放大器中的探测器接收,接收的光信号经光电转换后由ARM的A/D转换模块采集电压信号。再次,电压信号经处理后由RS232串口发往上位机PC,由上位机监控平台显示电压与转速、流速与流量等曲线或参数。最后,搭建实验台,验证流量检测系统的可行性。实验结果证明,本系统涡轮机构设计合理,涡轮旋转均匀稳定,可测量0.122~1.203m/s流速的流体流量。反射光纤检测转速精度较高,最高可识别336.13r/min的转速。同时能够在上位机实时显示结果曲线,有良好的稳定性。结论部分对本系统的优势、缺点以及未来的改进方向做了分析说明。
[Abstract]:Flow detection plays an important role in industrial production, scientific experiments and economic accounting, and is an important part of energy measurement. At present, the flow detection of large diameter pipeline is very extensive. However, most of the Flowmeter installation needs to cut off the pipeline, which often causes inconvenience to industrial production. The traditional fiber-optic Flowmeter not only can realize the continuous tube disassembly and assembly, but also has the advantages of strong applicability and strong anti-interference ability. However, the traditional design puts the optical fiber probe inside the pipeline, and the cleanliness of the fluid under test is very high in the optical fiber detection, and there is the problem that the nature of the measured fluid affects the accuracy of the flow detection. In this paper, an optical fiber flow sensor system with inserted vertical axis turbine is designed. The turbine mechanism and the reflective intensity modulated fiber optic sensor (RIM-FOS) are improved. The optical signal detection unit is designed over the pipeline. The direct contact between the optical signal and the fluid is avoided, and the problem that the detection accuracy of the traditional fiber-optic Flowmeter is affected by the cleanliness of the fluid is solved. Firstly, the 3D model of pipeline and turbine mechanism is built by UG software, and two vertical axis turbines are designed. The two models are imported into ANSYS for fluid simulation, and the simulation results of the two kinds of turbines are compared. According to the simulation results, a more optimized turbine mechanism is determined, and the turbine simulation coefficient k. is obtained at the same time. Draw the engineering drawing of the turbine mechanism by CAXA software and carry on the solid processing. Secondly, the light intensity modulation function of RIM-FOS is simulated by MATLAB, and the reference value of optical fiber parameters is obtained. The optical fiber amplifier is used as the light source and detector of RIM-FOS, and the coaxial fiber is used as the optical fiber probe. The optical signal is sent out by the light source device of the fiber amplifier and then received by the detector in the optical fiber amplifier after reflected by the end surface of the wheel axis. The received optical signal is collected by the arm's A / D conversion module after photoelectric conversion. Thirdly, the voltage signal is sent from RS232 serial port to PC, and the monitoring platform displays the curves or parameters, such as voltage and speed, velocity and flow rate, etc. Finally, the experiment platform is built to verify the feasibility of the flow detection system. The experimental results show that the turbine mechanism of the system is reasonable, the turbine rotation is uniform and stable, and the flow rate of 0.122~1.203m/s velocity can be measured. The measuring speed of 336.13r/min can be recognized by reflecting optical fiber with high precision. At the same time, it can display the result curve in the host computer in real time, and has good stability. In conclusion, the advantages and disadvantages of the system and the direction of improvement in the future are analyzed.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP274

【参考文献】

相关期刊论文 前10条

1 谢思莹;张小栋;;双圈同轴光纤束传感器三维空间输出特性研究[J];振动.测试与诊断;2017年01期

2 王雪萍;王洪涛;刘会华;单波;;基于Modbus-RTU通信的门窗两性检测系统[J];自动化与仪表;2016年07期

3 梅教旭;汪磊;谈图;刘锟;王贵师;高晓明;;Raman光纤放大器在远距离遥感探测中的应用[J];量子电子学报;2016年03期

4 孙科;张亮;何环宇;;三叶片垂直轴水轮机自启动性能数值计算[J];哈尔滨工业大学学报;2016年04期

5 李小京;路璐;;插入式电磁流量计的研究[J];传感器与微系统;2016年04期

6 薛海东;郭迎清;杜玉环;张小栋;丁毅;;基于DSP的高精度测频方法与软件设计[J];传感器与微系统;2016年01期

7 杜玉环;郭迎清;薛海东;张小栋;丁毅;;基于LabVIEW的FFT光纤涡轮流量测量系统研究[J];仪表技术与传感器;2015年11期

8 陈俊良;叶林;葛俊锋;贾诚安;桂康;;TeeChart控件在实时检测系统上位机软件中的应用[J];工业控制计算机;2015年06期

9 吴桂清;张欣萍;罗鹂;柴介雄;;基于STM32F207与CAN总线的车载监测系统设计[J];电源技术;2015年02期

10 关松;;基于ANSYS的高精度涡轮流量计设计[J];化工自动化及仪表;2014年09期

相关硕士学位论文 前3条

1 彭欢;单模光纤照射反射式光纤位移传感技术研究[D];哈尔滨工程大学;2012年

2 王文辉;大管径管道流量测量方法研究[D];华北电力大学(北京);2011年

3 翁倩玉;基于UG的叶片建模与检测技术的研究[D];哈尔滨工业大学;2008年



本文编号:2066616

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2066616.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e7484***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com