基于模糊聚类的山东省各市经济竞争力的分类研究
[Abstract]:Fuzzy clustering analysis is an important research direction of clustering analysis. In real life, we often encounter the situation that the characteristics of things are not clear or the boundaries are not clear, and fuzzy clustering analysis is proposed to solve this kind of problems. As a branch of multivariate statistical analysis, it has been widely used in many fields, such as economy, society, transportation, medicine, meteorology, biology and so on, and has become an important tool in data analysis. Since the reform and opening up, the economy of Shandong Province has been developing rapidly, but the phenomenon of economic imbalance between cities in Shandong Province is becoming more and more serious. In order to study the differences and similarities of economic competitiveness among prefecture-level cities, and then make clear the reasons for the economic strength of each city, this paper classifies the economic competitiveness of each prefectural city in Shandong Province. Because some indexes of economic competitiveness are fuzzy index, this paper improves the compactness factor, separation factor and overlap factor by studying the fuzzy clustering validity test index put forward by predecessors. A new fuzzy clustering validity index is presented. The optimal clustering number is determined on the basis of the new fuzzy clustering validity index, and the fuzzy C-means algorithm is optimized with principal component analysis. In this paper, we first set up an index system to study the economic competitiveness. We used the principal component analysis (PCA) method to analyze the raw data collected, and obtained the ranking of the comprehensive economic competitiveness of cities at the prefectural level. Finally, the principal component factor score obtained after dimensionality reduction is input into the fuzzy C-means algorithm as the original data, and the value of the new fuzzy clustering validity index is calculated to determine the best classification: the first category, Jinan, Qingdao, Zibo, Yantai City, Weifang City; second kind, Zaozhuang City, Dongying City, Jining City, Taian City, Weihai City, Rizhao City, Laiwu City, Linyi City, Dezhou City, Liaocheng City, Binzhou City, Heze City. Based on the classification results and principal component analysis, the related analysis and suggestions are given.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP311.13
【相似文献】
中国期刊全文数据库 前10条
1 杨瑾;申普兵;周淑华;;基于模糊聚类的攻击预警[J];通信技术;2008年12期
2 张峰;吴钦章;任国强;;一种模糊聚类的快速算法[J];贵州大学学报(自然科学版);2009年03期
3 胡伟轩,翁良科,郑小年,周永萱;发声器件的模糊聚类[J];华中工学院学报;1987年03期
4 林景荣;一种以秩和为因子的模糊聚类预报法[J];福州大学学报(自然科学版);1988年03期
5 许本辉;用电脑进行模糊聚类分析的研究[J];电脑开发与应用;1997年04期
6 黄凤岗,孙文彦,宋克欧;模糊聚类网中多对一映射的实现[J];哈尔滨工程大学学报;1998年02期
7 双凯,董守平;粒子成像测速图像的模糊聚类识别[J];石油大学学报(自然科学版);2000年06期
8 王艳玮,樊其瑾,彭炎午;基于模糊聚类的产品合理子装配划分[J];机械科学与技术;2001年02期
9 张晓杰;;实现工程结构构件模糊聚类归并的冗余聚类筛除法[J];计算机辅助设计与图形学学报;2006年02期
10 王纬;王妍;黄山;;模糊聚类功能实现[J];科技创新导报;2007年36期
中国重要会议论文全文数据库 前10条
1 张春月;李晓奇;;基于SPSS的模糊聚类分析[A];第七届中国不确定系统年会论文集[C];2009年
2 朱辉;李在铭;;基于模糊聚类的图像阀值处理方法及其在医学中的应用[A];第十届全国信号处理学术年会(CCSP-2001)论文集[C];2001年
3 朱枝琳;;基于模糊聚类的城市功能区划分研究[A];2006年浙江省测绘学会工程测量专业委员会论文评审和讨论工程测量发展趋势会议论文集[C];2006年
4 李扬;谢春雪;赵小囡;李红;;基于模糊聚类的方法评定学生的学习状态[A];创新沈阳文集(B)[C];2009年
5 李仲来;;模糊聚类与系统聚类的结合分析[A];中国系统工程学会模糊数学与模糊系统委员会第五届年会论文选集[C];1990年
6 李小平;焦李成;;信息颗粒在数据模糊聚类中的应用与构造[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
7 王建伟;谢永强;;基于遗传模糊聚类的异常检测方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
8 杜赵群;于伟东;;服装面料风格的模糊聚类研究[A];2005现代服装纺织高科技发展研讨会论文集[C];2005年
9 李俊花;刘文白;孙昭晨;崔莉;;基于半模糊聚类的长输管道泄漏监测[A];2007年中国智能自动化会议论文集[C];2007年
10 丁力行;阮秀英;邓玉艳;;基于,
本文编号:2142111
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2142111.html