面向带钢表面缺陷图像的特征提取算法研究
[Abstract]:As one of the main products of steel industry, strip steel is widely used in the production and life of national economy. Due to the restriction of many factors, many kinds of defects are easy to appear on the strip surface. Therefore, timely and accurate detection of strip surface defects is of great significance to improve the quality of strip products. The speed of strip steel running on the production line is fast, and the real-time requirement of defect detection system is high. In the actual production environment, most of the images collected from the strip surface are non-defect images, so we can filter the defect images before feature extraction operation. The fast pre-judgment includes two stages: binarization and defect judgment. The binary processing can show the defect part more clearly, and then the gray-scale distribution characteristics in the image can be determined to determine whether there are defects in the image. Texture is an important feature in image analysis. Considering that there is abundant texture information in most strip defect images three constructional factors such as step size and gray level are used to construct feature vectors by using gray level co-occurrence matrix to extract features generate direction and generate step size and gray level. Different from the traditional method, the average value of the feature parameters in different directions is taken as the element of the final feature vector, and the average value of multiple feature parameters obtained from each direction is taken as the element of the final feature vector for the feature extraction of the strip image. Experiments show that this method can improve the classification accuracy of strip defects. Directional gradient histogram (Histogram of Oriented Gradient,HOG) is another feature extraction method. HOG was initially used to detect pedestrians in static images, but it was extended to various fields due to its strong feature description ability. Aiming at the problem of strip defect classification, the parameters affecting HOG feature are optimized, and the gradient calculation template of HOG feature is improved. The experiments show that the high dimensional template is more favorable to the classification of strip defects.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 徐超;高梦珠;查宇锋;曹利民;;基于HOG和SVM的公交乘客人流量统计算法[J];仪器仪表学报;2015年02期
2 李智峰;朱谷昌;董泰锋;;基于灰度共生矩阵的图像纹理特征地物分类应用[J];地质与勘探;2011年03期
3 丁世飞;齐丙娟;谭红艳;;支持向量机理论与算法研究综述[J];电子科技大学学报;2011年01期
4 吴刚;唐振民;程勇;朱峰;魏利华;;灰度共生矩阵纹理特征的运动目标跟踪方法[J];南京理工大学学报(自然科学版);2010年04期
5 张国翊;胡铮;徐婷;;基于特征提取的缺陷图像分类方法[J];北京工业大学学报;2010年04期
6 吴秀永;徐科;徐金梧;;基于Gabor小波和核保局投影算法的表面缺陷自动识别方法[J];自动化学报;2010年03期
7 夏承亮;李成贵;熊昌友;;板材表面质量在线检测方法概述[J];工业计量;2010年01期
8 江明;刘辉;黄欢;;图像二值化技术的研究[J];软件导刊;2009年04期
9 何永辉;王康健;石桂芬;;基于机器视觉的高速带钢孔洞检测系统[J];应用光学;2007年03期
10 周金和;彭福堂;;一种有选择的图像灰度化方法[J];计算机工程;2006年20期
相关硕士学位论文 前6条
1 罗婷婷;两种改进的彩色图像灰度化算法研究[D];浙江工商大学;2014年
2 谢光伟;板带材表面缺陷检测技术的研究[D];苏州大学;2014年
3 李陆陆;基于灰度共生矩阵和MRF的纹理图像分割[D];辽宁师范大学;2013年
4 王路;板带钢表面质量智能检测系统研究[D];武汉科技大学;2011年
5 徐秋景;基于空间灰度共生矩阵和Hu不变矩的东北虎个体识别[D];东北林业大学;2009年
6 王辉;基于灰度共生矩阵木材表面纹理模式识别方法的研究[D];东北林业大学;2007年
,本文编号:2388069
本文链接:https://www.wllwen.com/jingjilunwen/jiliangjingjilunwen/2388069.html