当前位置:主页 > 经济论文 > 经济理论论文 >

经济增长的控制模型研究

发布时间:2018-08-11 15:32
【摘要】: 对于当代各国而言,经济增长是一个备受政府、公众和经济学家关注的问题。各国政府在制定政策时无一例外地将保证经济增长作为一项宏观经济指标;公众普遍认为,经济增长是经济繁荣和国民福利提高的前提,是解决其它经济疾病的万能良方。正是因为经济增长问题如此重要,越来越多的人开始将注意力投入到经济增长问题的研究中。对经济增长问题的研究对于促进我国经济高速、稳定、持续的增长具有重要的理论意义和现实指导意义。 许多学者对经济增长问题进行了大量的研究,他们用计量经济学、数理经济学、经济控制论等方法,建立了各自的理论和模型,希望借助于数学工具对经济系统进行定量的描述和研究,以揭示各种因素的作用机理和数量关系。 经济系统是一个演化着的复杂系统,本文运用系统科学的理论和思想,把它作为一类生灭系统,采用定性和定量相结合的方法对经济增长问题进行研究。 把资本的形成和运转的动态发展过程看成一个生灭过程。引进双变量的连续函数,既考虑资本与时间的关系,,又考虑了资本的役龄(有的学者把它看成一个补充变量,在运筹学叫做补充变量法),把资本的存量和消费水平作为经济系统的状态变量,把劳动力函数和科技进步函数作为外生变量,用积累率控制投资规模,用控制论的方法建立了宏观经济系统分布参数的数学模型。 然后,本文借鉴前人的研究成果,通过不同的生产函数作为反馈要素,建立了一系列宏观经济系统的控制模型。一方面形成了资本动态发展的闭环控制系统,可以实现对经济系统的调控;另一方面,形成了双变量的动态生产函数,来研究经济增长的有关问题。进而分别讨论了各种模型的解的存在性、唯一性,以及与初始条件和边界条件的相关性质,为模型进一步的研究和计算奠定理论基础。 最后,对技术进步与经济增长的相互作用进行了定性和定量研究,定量的结果表明:技术进步在经济增长中的作用呈现出一种稳定上升的长期趋势。这与用C—D生产函数方法计算结果基本一致,从理论和实际两个方面验证了本文所建立的模型的正确性。可为今后的经济决策和宏观调控提供依据。 本文的主要创新之处在于: (1)在宏观层次上将经济系统作为演化的复杂系统,利用系统科学的思想和方法,将其作为一类生灭系统来研究经济增长问题。这种思想和方法有别于其它的研究。 (2)建立了用分布参数描述的宏观经济系统的控制模型。引进双变量的连续函数不仅考虑到资本与时间的关系,而且考虑了其役龄的因素。这比只考虑时间的因素的模型更能细致地刻画经济系统。分布参数模型能够反映出复杂系统的非线性特性。 (3)本研究用不同的生产函数作为系统的控制反馈因素,形成一个闭环控制系统,能够实现对经济系统的调控,达到经济稳定、持续增长目的。 (4)在证明了连续型模型解的存在性和唯一性,及与初始条件和边界条件的相关性质之后,利用其离散化的模型测算经济增长中技术进步的作用,与采用C—D生产函数计算的结果基本一致,充分说明了技术进步在经济增长中呈现出一种稳定上升的长期趋势。更加清楚地认识到技术进步在经济增长中的长期影响。
[Abstract]:Economic growth is an issue of great concern to the government, the public and economists in contemporary countries. Governments, without exception, regard ensuring economic growth as a macroeconomic indicator when formulating policies. The public generally believe that economic growth is the premise of economic prosperity and the improvement of national welfare, and is the solution to other economic diseases. It is precisely because of the importance of economic growth that more and more people begin to devote their attention to the study of economic growth.
Many scholars have done a lot of research on economic growth. They have established their own theories and models by means of econometrics, mathematical economics and economic cybernetics. They hope to describe and study the economic system quantitatively by means of mathematical tools in order to reveal the mechanism of action and quantitative relationship of various factors.
Economic system is an evolving complex system. In this paper, we use the theory and thought of system science as a kind of birth and death system, and study the problem of economic growth by combining qualitative and quantitative methods.
The dynamic development of capital formation and operation is regarded as a birth-and-death process. The bivariate continuous function is introduced, which considers both the relationship between capital and time and the service life of capital (some scholars regard it as a supplementary variable, called supplementary variable method in operational research), and takes the stock and consumption level of capital as the economic system. The state variable takes the labor force function and the science and technology progress function as exogenous variables, controls the investment scale with the accumulation rate, and establishes the mathematical model of the distribution parameters of the macroeconomic system with the method of cybernetics.
Then, this paper builds a series of control models of macroeconomic system by referring to previous research results and using different production functions as feedback elements. On the one hand, a closed-loop control system of capital dynamic development is formed, which can realize the regulation and control of economic system; on the other hand, a bivariate dynamic production function is formed to study. Furthermore, the existence and uniqueness of the solutions of various models, as well as the related properties with the initial and boundary conditions, are discussed respectively, which lays a theoretical foundation for further study and calculation of the models.
Finally, the interaction between technological progress and economic growth is studied qualitatively and quantitatively. The quantitative results show that the role of technological progress in economic growth presents a long-term trend of steady increase, which is basically consistent with the results calculated by the C-D production function method. The theoretical and practical results verify the proposed model. The correctness of the model can provide a basis for future economic decision-making and macroeconomic regulation and control.
The main innovations of this paper are:
(1) Regarding the economic system as an evolutionary complex system at the macro-level, and using the ideas and methods of system science to study the economic growth as a kind of birth and death system.
(2) The control model of macroeconomic system described by distributed parameters is established. The bivariate continuous function is introduced to consider not only the relationship between capital and time, but also the factors of service life. This model can describe the economic system more carefully than the model which only considers the time factor. Linear characteristics.
(3) In this study, different production functions are used as control feedback factors to form a closed-loop control system, which can control the economic system and achieve economic stability and sustained growth.
(4) After proving the existence and uniqueness of the solution of the continuous model and the related properties with the initial and boundary conditions, the effect of technological progress in economic growth is estimated by using its discrete model, which is basically consistent with the result calculated by using the C-D production function. This fully demonstrates that technological progress presents a phenomenon in economic growth. The long-term trend of steady rise. A clearer understanding of the long-term impact of technological progress on economic growth.
【学位授予单位】:北京信息控制研究所
【学位级别】:博士
【学位授予年份】:2003
【分类号】:F062.4;F224

【引证文献】

相关期刊论文 前3条

1 焦红兵;吴冀徽;;含有时滞资产投资模型的积累率的辨识问题[J];数学的实践与认识;2008年23期

2 张红梅;刘会茹;蔡惠萍;赵建华;;线性经济发展系统解的性质研究[J];数学的实践与认识;2010年23期

3 刘会茹;何俊;张红梅;李伟才;;一类非线性经济发展系统的半离散模型分析[J];商业时代;2012年15期

相关硕士学位论文 前1条

1 阚红宇;基于Cobb-Douglas生产函数下宏观经济系统的最优控制[D];哈尔滨师范大学;2011年



本文编号:2177412

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jingjililun/2177412.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3b03d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com