城市道路交通网络银行优化方法
发布时间:2018-04-28 10:23
本文选题:限行 + 双层规划 ; 参考:《中南大学》2012年硕士论文
【摘要】:随着社会发展和人民生活水平的提高,现阶段城市高峰期交通拥挤问题日益严重。交通拥挤不仅给居民出行带来困扰,给交通管理带来困难,给环境带来污染,而且降低了整个社会福利,使得资源在无形之中被消耗。为了解决城市交通需求剧增或交通网络能力严重下降问题,交通限行方案轮流限制一定比例的小汽车进入指定限行区域,迫使部分被限行的小汽车出行者转向公共交通,这是城市交通管理的一种有效手段。限行方案优化问题是交通管理者与交通出行者之间的Stackelberg博弈,本文采用双层规划模型描述限行方案优化问题,上层规划以限行方案为优化决策,在最小化超限流量的基础上,最大化消费者剩余;下层规划基于当前限行方案确定弹性需求、方式选择、多类用户均衡配流。设计了求解双层规划模型的可变长编码遗传算法,动态地将求解过程中超过能力限制的路段都列入搜索范围,并设计了梯度投影子算法求解下层规划。对于求解双层规划获得的限行方案,通过成片处理和绕道程度判断,最终获得实用化限行方案。本文的算例分析表明:优化方法对限行方案的制定提供了有效手段理论支撑。
[Abstract]:With the development of society and the improvement of people's living standard, the problem of urban rush hour traffic congestion is becoming more and more serious. Traffic congestion not only brings troubles to residents' travel, brings difficulties to traffic management, pollutes the environment, but also reduces the whole social welfare and resources are consumed in the invisible way. In order to solve the problem of sharp increase in urban traffic demand or serious decline in traffic network capacity, traffic restriction schemes take turns to restrict a certain proportion of cars entering designated restricted areas, forcing some restricted car travelers to turn to public transport. This is an effective means of urban traffic management. The optimization problem of the limit scheme is a Stackelberg game between the traffic manager and the traffic traveler. In this paper, a bilevel programming model is used to describe the optimization problem of the limit scheme. The upper level programming takes the limit scheme as the optimal decision and minimizes the excess flow. The lower level programming is based on the current limit scheme to determine the elastic demand, the way to choose, and the multi-class users to balance the allocation of flow. A variable length coding genetic algorithm for solving bilevel programming model is designed, which dynamically includes all sections beyond the capacity limit in the search range, and a gradient projection subalgorithm is designed to solve the lower level programming. Finally, the practical limit scheme is obtained by slice processing and judging the degree of bypass for the line limiting scheme obtained by solving the bilevel programming. The analysis of the example shows that the optimization method provides an effective means theory support for the establishment of the limit scheme.
【学位授予单位】:中南大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:F572;F224
【参考文献】
相关期刊论文 前7条
1 孙德锋;广义非线性互补问题的投影收缩法[J];计算数学;1994年02期
2 陈义华;吴国强;朱玉琴;;多模式拥挤交通网络中的路径分配与收费定价模型[J];交通与计算机;2007年06期
3 方建安,邵世煌;采用遗传算法学习的神经网络控制器[J];控制与决策;1993年03期
4 周晶,盛昭瀚,何建敏;弹性需求下公交网络系统票价结构的优化[J];自动化学报;2001年05期
5 李相勇,蒋葛夫;城市道路服务水平的模糊综合评判[J];交通运输系统工程与信息;2002年03期
6 王健,安实,徐亚国;道路拥挤定价下的公交收费模型研究[J];中国公路学报;2005年04期
7 黄海军;拥挤道路使用收费的研究进展和实践难题[J];中国科学基金;2003年04期
,本文编号:1814864
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/1814864.html