成都市快速公交乘客刷卡数据研究
本文选题:快速公交 + 数据分析 ; 参考:《西南交通大学》2017年硕士论文
【摘要】:快速公交系统大多采用闸机刷卡,进站乘车的乘车方式,而且车辆灵活运营,较之普通公交,车辆的运营信息通常是不易获取的信息。本文在仅依靠快速公交乘客刷卡数据的情况下,对车辆运营信息进行推算,并根据推算所得数据进行统计分析,对公交服务效果作出评价,并对公交运营管理提供相关建议。本文使用Matlab 2012b进行数据处理和算法构建和执行,使用SPSS Statistics 22进行站点客流统计分析。本文创新性研究工作可概括为以下三个方面:第一,在缺乏GPS等其他类型数据的情况下,仅基于成都市快速公交一周内的乘客刷卡数据,在进行基本数据整理和统计分析过后,通过聚类算法推算出车辆运营信息,包括各个时间段运营的车次数量、车辆运营时刻表以及各个车次在沿线站点的上下车人数等难以获取的数据信息。第二,根据车辆运营信息计算并统计各项满载率指标,然后基于车辆满载情况进行客流流向和客流量统计。并且通过集散量的统计分析和系统聚类方法选出各区域代表站点,提出以代表站点预测其他站点集散量的客流预测方法。并且选用其他日期的数据与预测数据进行了对比,证明了结果的可行性与准确性。第三,根据车辆运营信息计算乘客等车时间、乘客乘车过程中经历的平均满载率和乘客平均每公里通勤时间等对公交乘客满意度有重要的几个指标。对各个指标进行统计分析过后,用K均值的方法将乘车感受不同的乘客分为若干类别,识别出乘客满意度较差的乘客。与传统调查问卷的方式不同,直接通过数据量化指标可更利于公交优化研究,对于公交系统运营更具管理意义。
[Abstract]:The bus rapid transit system mostly uses the gate machine to swipe the card, enters the station to take the bus the way, moreover the vehicle is nimble operation, compared with the ordinary public transport, the vehicle operation information is usually difficult to obtain the information. Based on the data of bus Rapid Transit (BRT) passengers swiping cards, this paper calculates the operation information of the vehicles, and makes statistical analysis according to the calculated data to evaluate the effect of bus service, and provides relevant suggestions for bus operation management. In this paper, Matlab 2012b is used for data processing and algorithm construction and execution, and SPSS Statistics 22 is used for statistical analysis of station passenger flow. The innovative research work in this paper can be summarized as follows: first, in the absence of GPS and other types of data, only based on the data of passengers swiping cards within one week of Chengdu bus Rapid Transit, after the basic data collation and statistical analysis, The operation information of vehicles is calculated by clustering algorithm, including the number of trains in operation in each time period, the running schedule of vehicles and the number of people on and off each train at the station along the route, and so on, which are difficult to obtain. Secondly, according to the vehicle operation information, the full load rate index is calculated and counted, and then the passenger flow direction and passenger flow statistics are carried out based on the vehicle full load situation. Through the statistical analysis of the distribution amount and the systematic clustering method, the representative stations of each region are selected, and the passenger flow forecasting method is put forward to predict the distribution of other stations on behalf of the stations. The feasibility and accuracy of the results are proved by comparing the data of other dates with the predicted data. Thirdly, according to the vehicle operation information, the passenger waiting time, the average full load rate and the average commuting time per kilometer have several important indicators for bus passenger satisfaction. After the statistical analysis of each index, the passengers with different sense of travel are divided into several categories by means of K-means method, and the passengers with poor passenger satisfaction are identified. Different from the traditional questionnaire, it can be more beneficial to the study of bus optimization by directly quantifying the data, and it has more management significance for the operation of the public transport system.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:F572.88
【参考文献】
相关期刊论文 前10条
1 杨熙宇;暨育雄;张红军;;基于感知的公交调度发车频率和车型优化模型[J];同济大学学报(自然科学版);2015年11期
2 高华;;基于视频分析的公交车辆拥挤信息发布系统设计[J];工业控制计算机;2015年10期
3 韩萌;肖婵;;公交服务质量评价研究[J];交通节能与环保;2015年05期
4 马书红;张勐豪;;镇村公交下一种新型智能公交到站时间预测算法[J];计算机应用研究;2016年04期
5 马晓磊;刘从从;刘剑锋;陈锋;于海洋;;基于公交IC卡数据的上车站点推算研究[J];交通运输系统工程与信息;2015年04期
6 张兵;陈廷照;曾明华;;基于BP神经网络的城市公交服务质量影响因素主成分分析[J];交通运输研究;2015年01期
7 张鹏;陆瑶;;公交站点客流量预测方法[J];黑龙江工程学院学报;2014年03期
8 徐文远;邓春瑶;刘宝义;;基于公交IC卡数据的公交客流统计方法[J];中国公路学报;2013年05期
9 龙瀛;张宇;崔承印;;利用公交刷卡数据分析北京职住关系和通勤出行[J];地理学报;2012年10期
10 ;Dwell time estimation models for bus rapid transit stations[J];Journal of Modern Transportation;2012年03期
相关硕士学位论文 前3条
1 刘文芳;基于成都市公交IC卡数据的公交客流量分析[D];西南交通大学;2015年
2 秦志鹏;成网条件下城市轨道交通乘客出行路径选择问题研究[D];北京交通大学;2011年
3 南爱强;城市公交安全管理及评价研究[D];长安大学;2007年
,本文编号:1875549
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/1875549.html