西津枢纽货运量预测及二线船闸通航条件研究
发布时间:2018-07-07 22:03
本文选题:西津水利枢纽 + 二线船闸 ; 参考:《重庆交通大学》2013年硕士论文
【摘要】:水运货运量是确定水运交通基础设施建设规模的主要依据,货运量预测结果的合理性、可靠性直接影响水运工程项目的投资和效益,对制定未来水运发展战略、合理利用资源、充分发挥水运设施的效益等方面都有着极其重要的影响。船闸货运量是衡量内河航运发展的一项重要指标,其影响因素多。本文以西津水利枢纽二线船闸为样本,结合西津水利枢纽腹地经济发展及水运量现状和发展趋势,运用宏观整体预测和微观分析的综合预测方法,采用回归分析模型、三次指数平滑法、抽象方式选择模型、增长系数法四种数学方法,预测了西津水利枢纽中长期过闸货运量需求,预计西津水利枢纽过闸货运量2020年、2030年、2040年将分别达1690万吨、2760万吨、3720万吨。合理确定西津水利枢纽二线船闸的建设规模为按最大通过3000t级船舶的Ⅰ级船闸建设。 通航建筑物的进出口区域,通常是指船闸上、下游引航道与河流(或运河)相连接的口门区,是船闸进出口与河道自由航行河段起纽带作用的区域,是过闸船舶(队)进出引航道的咽喉。当引航道轴线与河段主流成一定夹角时,引航道口门区常出现一种作用在船舶侧面的不利航行的复杂流态—“斜向流”。由于“斜向流”的作用,将迫使进出船闸的船舶扭转和强烈震动颠簸漂移,偏离航迹线而触碰引航墙,对船舶航行是不安全的。因此,在各种通航枢纽设计时,需要对通航建筑平面布置进行模型试验,包括物理模型和数学模型,认识了解影响口门区水流条件的情况,分析斜向水流形成原因,进而提出改善口门区水流条件的种种措施,是非常具有现实意义的。 鉴于通航建筑物的复杂性,本文以西津水利枢纽二线船闸工程为基础,通过对其建立物理模型,经水面线及流速验证,达到与原型相似的要求,模型能够较准确地反映试验河段的水流运动特性。针对上、下引航道原方案布置和河型河势及地形等特点,进行了多方案对比试验,结果表明: 1)由于西津水利枢纽二线船闸上引航道口门区处于弯曲河段弯道上游,上引航道轴线与主流之间的夹角较大,致使口门区存在较强横流;同时在引航道内形成大范围的回流,当入库流量较大(Q9122m3/s),泄洪闸全部敞泄时,原设计方案上引航道口门区纵向、横向及回流流速均超过规范允许值。模型通过多方案的对比试验:采取加长分水墙和调整开挖边线等措施,使上引航道口门内、外的水流条件得到明显改善,在流量Q≤9122m3/s时,除个别点外,各项流速指标均能够满足相关规范要求。 2)由于西津水利枢纽船闸下引航道布置于弯曲河道弯顶附近,二线船闸下引航道口门区水流条件将受弯道水流、枢纽调度和运行方式的影响较大,通过调整引航道布置,一、二线船闸下引航道分开布置,适当加长一、二线之间隔流堤长度,调顺下泄水流方向,改善一、二线船闸下引航道口门区的水流流态,使口门区通航水流指标基本能够满足规范要求。
[Abstract]:The water transport volume is the main basis to determine the scale of the infrastructure construction of the water transport traffic. The rationality of the forecast results of the freight volume, the reliability directly affects the investment and the benefit of the water transportation project, and has a very important influence on the formulation of the future water transportation development strategy, the rational utilization of resources and the full play of the benefits of the water transport facilities. The sluice freight volume is an important index to measure the development of inland river shipping. In this paper, taking the second line ship lock of Xijin water control project as the sample, combined with the current situation and development trend of the economic development and the water transport volume in the hinterland of the Xijin water control project, the regression analysis model is adopted for the three times. The index smoothing method, the abstract mode selection model and the growth coefficient method are four mathematical methods to predict the long term transit demand in the Xijin water control project. It is estimated that the transport volume of the Xijin water control project in 2020, 2030, and 2040 will reach 16 million 900 thousand tons, 27 million 600 thousand tons and 37 million 200 thousand tons respectively. For the construction of grade I shiplock according to the maximum 3000t class ship.
The import and export area of a navigable building, usually refers to the gate on the ship lock, the downstream channel and the river (or canal), which is the link between the import and export of the ship lock and the free channel of the river, and the throat of the passage of the ship (team) entering and entering the channel. A complex flow of adverse navigation, which acts on the side of a ship, often appears, "oblique flow". Due to the effect of "oblique flow", it will force the ship's torsional and strong vibration to move in and out of the ship lock, deviate from the track line and touch the pilotage wall. It is unsafe for the ship to navigate. The model test of the building layout, including the physical model and the mathematical model, understands the conditions affecting the flow conditions in the mouth area, analyzes the reasons for the formation of the oblique flow, and then puts forward various measures to improve the flow conditions in the entrance area, which is of great practical significance.
In view of the complexity of navigation buildings, this paper, based on the second line ship lock project of Xijin water control project, establishes a physical model through the verification of the surface line and flow velocity to meet the requirements of the prototype similar to that of the prototype. The model can accurately reflect the flow characteristics of the test river section. The comparison of different schemes has been carried out, and the results show that:
1) because the entrance area of the upper channel entrance area of the second route ship lock in the Xijin water control project is in the upper bend of the bend channel, the angle between the axis of the upper channel and the main stream is larger, resulting in strong crossflow in the entrance area, and a large reflux in the navigation channel is formed, and when the discharge flow is large (Q9122m3/s), the original design scheme is on the original design scheme. The longitudinal, lateral and reflux velocity of the entrance area of the pilot channel are more than the standard allowable values. Through the comparison test of the multi scheme, the flow conditions in the entrance gate of the upper channel are obviously improved by adopting the measures of lengthening the water wall and adjusting the border line, and the flow velocity indexes can be satisfied in the case of the flow rate of Q < < 9122m3/s. Relevant specification requirements.
2) due to the arrangement of the downstream channel of the Xijin water project in the vicinity of the curved top of the curved channel, the flow conditions in the entrance area of the lower channel entrance of the second line ship lock will be affected by the flow of the bend, and the mode of dispatch and operation of the hub is greatly influenced. By adjusting the layout of the navigation channel, the first and second line ship locks are arranged separately and the length of the dike between the first and second lines is properly lengthened. Adjust the flow direction to improve the flow pattern of the lower entrance channel of the first and second shiplock, so that the navigable flow index in the entrance area can basically meet the specifications.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:U641.2;U695.2
【参考文献】
相关期刊论文 前10条
1 黄碧珊,张绪进,舒荣龙,陈桂馥;新政电航枢纽船闸引航道口门区通航条件研究[J];重庆交通学院学报;2003年03期
2 李焱;郑宝友;刘清江;刘红华;;导航堤淹没式开孔对引航道通航水流条件的影响[J];中国港湾建设;2007年05期
3 黄顺泉;关于港口吞吐量预测方法选择的探讨[J];集装箱化;2003年07期
4 张亮;卢启超;;船闸引航道口门区通航水流条件改善措施的综述[J];科技信息;2009年25期
5 莫细喜;长洲水利枢纽通航水流条件分析[J];红水河;1999年02期
6 池弘福,王家宏,陈毓;舟山港口吞吐量预测方法探讨[J];浙江海洋学院学报(自然科学版);2001年02期
7 周代鑫;水利枢纽船闸引航道口门区流态改善措施[J];人民珠江;1997年05期
8 吴小明,,谢宇峰;水工建筑物下游回流及底沙淤积研究[J];人民珠江;1996年06期
9 孟祥玮,李金合,李焱,陈阳;导航堤开孔对通航水流条件影响的研究[J];水道港口;1998年02期
10 周华兴,郑宝友;船闸引航道口门区通航水流条件改善措施[J];水道港口;2002年02期
本文编号:2106420
本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/2106420.html