当前位置:主页 > 经济论文 > 交通经济论文 >

基于ACO的集装箱港口集卡作业调度优化研究

发布时间:2019-01-18 12:53
【摘要】:目前,随着我国人口数量的持续在增长,导致了土地资源的人均占有量变少,进而使得土地资源紧缺。因此,国家政府部门对港口占地面积约束限制越来越严格。目前,国内外各类大小港口发展需要共同解决增强港口吞吐能力、挖掘开发潜力以及管理体制完善等课题。一些发达国家现代化港口的管理水平比国内高得多,比如对于同一规模的港口,国外吞吐量能力比国内强数倍。通过设备投入增加,可以加快集装箱装卸速度,但也会增加成本投入。显然,集装箱装卸效率的提高十分重要,因此,运用科学的集装箱港口装卸工艺流程来提高集装箱装卸效率很关键。 集装箱港口集卡调度包括运输与装卸,同时又由于集卡数量的增多、集装箱港口集装箱数量增加、集装箱港口规模扩大等,这些因素造成集卡调度工作变得很复杂。所以,如何提高港口集卡工作效率是使集装箱港口生产率获得提高的必要条件。 本文首先通过对天津港(集团)有限公司港口集卡调度的调研,熟悉并掌握该公司的水平运输作业工艺流程,并收集了相关数据。然后结合实际情况明确集装箱港口的功能布局,业务流程作业资源及其设备配置。运用蚁群遗传算法理论知识及相关数据来确定港口水平运输工艺作业流程优化的目标。紧接着建立了面向“作业面”的集卡调度优化模型。最后依据天津港的实际作业情形及相关数据设计案例,,并运用Matlab优化工具箱求解出最佳的调度方式和调度路径。 本文结合集装箱港口水平运输作业工艺,采用ACO智能优化算法,给国内外港口企业构建一个可操作性强以及实用性高的方法,并为优化水平运输作业提供依据。本文理论意义和现实作用,主要表现为如下四方面:(l)完善和发展集装箱港口水平运输系统的理论体系;(2)为完善我国集装箱港口水平工艺优化提供可行方法;(3)通过优化其水平运输工艺,可提高集装箱港口的生产效率,促进集装箱港口的发展;(4)解决集装箱港口水平运输系统存在的问题,对开展多式联运、实现交通运输现代化作贡献。
[Abstract]:At present, with the continuous increase of population in our country, the per capita possession of land resources becomes less, which makes the land resources scarce. As a result, the state government has more and more strict restrictions on the port area. At present, all kinds of port development at home and abroad need to solve the problems of enhancing port handling capacity, tapping development potential and perfecting management system. In some developed countries, the management level of modern ports is much higher than that of domestic ones, for example, for ports of the same size, the throughput capacity of foreign countries is several times stronger than that of domestic ports. Through the equipment input increases, may speed up the container loading and unloading speed, but also will increase the cost input. Obviously, the improvement of container handling efficiency is very important, so it is very important to use scientific container port handling process to improve container handling efficiency. Container port card collection scheduling includes transportation and loading and unloading. At the same time, due to the increase of the number of container cards, the number of container ports, container port scale expansion and so on, these factors make card collection scheduling work become very complex. Therefore, how to improve the efficiency of port card collection is the necessary condition to improve the productivity of container port. In this paper, through the investigation of Tianjin Port (Group) Co., Ltd, we are familiar with and master the horizontal transportation process of Tianjin Port (Group) Co., Ltd, and collect the relevant data. Then, the function layout, operation resource and equipment configuration of container port are defined in combination with the actual situation. Ant colony genetic algorithm (AGA) theory and related data are used to determine the target of port horizontal transportation process optimization. Then, the optimization model of card scheduling for "job surface" is established. Finally, according to the actual operation situation of Tianjin Port and the relevant data design cases, the optimal scheduling mode and scheduling path are solved by using the Matlab optimization toolbox. Combined with container port horizontal transportation operation technology and ACO intelligent optimization algorithm, this paper provides a feasible and practical method for port enterprises at home and abroad, and provides the basis for optimizing horizontal transportation operation. The theoretical significance and practical function of this paper are as follows: (1) the theoretical system of improving and developing the container port horizontal transportation system in four aspects of: (l); (2) providing a feasible method for the perfection of China's container port horizontal process optimization; (3) by optimizing the horizontal transportation technology, the production efficiency of container port can be improved and the development of container port can be promoted. (4) solving the problems of container port horizontal transportation system and contributing to carrying out multimodal transport and realizing transportation modernization.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F552

【参考文献】

相关期刊论文 前10条

1 蒲兴成;孙凯;;一种改进的自适应蚁群算法及其应用研究[J];重庆邮电大学学报(自然科学版);2011年03期

2 黄立君;许永花;;遗传算法和蚁群算法融合求解TSP[J];东北农业大学学报;2008年04期

3 计明军;刘丰硕;李郭记;靳志宏;;基于装卸协同作业的集装箱码头集卡调度及配置优化[J];大连海事大学学报;2010年01期

4 孙力娟;王汝传;;基于蚁群算法和遗传算法融合的QoS组播路由问题求解[J];电子学报;2006年08期

5 计明军;靳志宏;;集装箱码头集卡与岸桥协调调度优化[J];复旦学报(自然科学版);2007年04期

6 王超;;码头集卡运输线路的模型研究及设计[J];港口科技;2009年11期

7 曾庆成;杨忠振;;集装箱码头作业调度双层规划模型及求解算法[J];哈尔滨工程大学学报;2007年03期

8 李跃光;张远平;;一种改进的蚁群算法在垃圾运输问题中的应用[J];湖南师范大学自然科学学报;2010年02期

9 尚晶;;面向双40英尺岸桥的码头集卡调度模型与算法[J];华中科技大学学报(自然科学版);2010年11期

10 蔡光跃;董恩清;;遗传算法和蚁群算法在求解TSP问题上的对比分析[J];计算机工程与应用;2007年10期



本文编号:2410738

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/jtysjj/2410738.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9d497***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com