区域经济单位GDP能耗的解析研究
[Abstract]:Energy is an important strategic material. The scarcity and non-renewable of energy make it the most important material related to people's livelihood and social and economic development. The energy efficiency of regional economy has become a hot issue in recent years. This paper takes Liaoning Province as an example to analyze the energy consumption of regional economy unit GDP. In this paper, the relationship between economic growth and energy consumption is studied, in order to grasp the change law of energy consumption per unit GDP of regional economy, to construct reasonable and effective prediction, early warning method and system of unit GDP energy consumption, in order to change the mode of development. Promote regional economic and scientific development, build a resource-saving, environmental-friendly society to provide adequate protection. This paper mainly studies the influencing factors of unit GDP energy consumption. Based on the analysis and statistics of a large number of relevant data, the prediction and early warning model of unit GDP energy consumption in regional economy is established. The contents of the work are divided into the following five aspects: 1) according to the actual situation, the relevant data published and recorded by the Bureau of Statistics are analyzed, and the electricity consumption and production value closely related to the energy consumption per GDP are mainly studied. Based on the data of industrial structure and energy consumption structure, the correlation of data is analyzed, and the statistical value of electricity consumption, historical energy consumption and historical GDP are used as the basis of the prediction and early warning model. On this basis, the data is preprocessed to lay a data foundation for the construction of unit GDP energy consumption prediction model. (2) aiming at the problem of less data in the research, the support vector machine (SVM) algorithm is used to build the model. In order to further improve the accuracy of the established model, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of the SVM algorithm. The experimental results show that the proposed algorithm can better follow the change of the actual situation, the prediction error is low, and it can meet the actual demand of 3. 3) the prediction results of unit GDP energy consumption can be analyzed. According to the given unit GDP energy consumption warning range, the unit GDP energy consumption warning is realized. The early warning of unit GDP energy consumption is another form of prediction results, which can more intuitively represent the predicted results and provide data support for decision makers.) the relevant factors that may affect the unit GDP energy consumption are studied. The relationship between industrial structure, energy consumption structure and energy consumption per unit of regional economy is analyzed qualitatively and quantitatively. The possible factors and ways of influencing energy consumption per unit GDP are analyzed, and the efficiency of energy utilization is improved. The theoretical direction of reducing the unit GDP energy consumption and providing operational direction 5) combined with the prediction and early warning algorithm proposed in this paper, a regional economic unit GDP energy consumption prediction system and its early warning subsystem are constructed. On the basis of realizing data management and other basic functions, the system has better prediction ability of unit GDP energy consumption, and the relative error between predicted value and actual value is small, which meets the management requirements of unit GDP energy consumption. At the same time, based on the prediction and analysis results, the system constructs a unit GDP energy consumption warning subsystem, and provides a variety of results display methods to achieve good human-computer interaction.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:F127;F205
【相似文献】
相关期刊论文 前10条
1 王一凡;赵欢;王培红;;能耗管理数据库系统的开发与利用[J];上海节能;2008年09期
2 姜锐;;循环经济视角下的饭店能耗管理对策探讨[J];经济研究导刊;2010年35期
3 刘鸿翔;;上印五厂的能耗管理制度[J];北京节能;1992年03期
4 彭代军;论我国住宅水电气能耗现代化收费管理[J];重庆师专学报;1999年02期
5 刘桂花;孙飞;;强化能耗监督管理 降低能源消耗[J];资源节约与环保;2009年03期
6 朱玲;;长沙星级饭店能耗管理状况及改进[J];中国商贸;2010年14期
7 胡兆光;;GDP能耗与电耗的关系[J];中国能源;2006年07期
8 张乐;;酒店能耗控制指标研究[J];能源研究与信息;2006年01期
9 本刊编辑部;;加强能耗管理控制 推进公共建筑节能——访全国政协常委、江西省工商联主席、泰豪集团董事长黄代放[J];智能建筑;2009年04期
10 孙晋响,耿翠堂;浅谈建立有利于企业节能降耗、增效管理的新机制[J];煤炭加工与综合利用;2003年03期
相关会议论文 前1条
1 黄韧;罗记龙;;绿色通信能耗专家系统[A];通信电源新技术论坛2011通信电源学术研讨会论文集[C];2011年
相关重要报纸文章 前10条
1 记者 张陆龙;我市推行更严格能耗管理制度[N];绍兴日报;2010年
2 通讯员 聂卿;漳泽发电分公司开展能耗评估[N];中国电力报;2005年
3 本报记者 马玲 通讯员 熊杰;管控住每一个能耗点[N];中国石化报;2014年
4 郗海才;齐鲁炼厂能耗管理效果显著[N];中国石化报;2004年
5 方彤;河南油田试油部三道防线降能耗[N];中国石化报;2008年
6 本报记者 穆广田 通讯员 贺地红;打好“组合牌” 能耗降下来[N];中国石油报;2013年
7 记者 王衍国 刘新圣;齐鲁石化储运厂节能实现新突破[N];物资信息报;2005年
8 薛振河;依靠科技进步 加强能耗管理 建设节约型企业[N];中国航空报;2006年
9 记者 余万芳邋见习记者 魏金金;能耗不降,企业和政府领导一律“问责”[N];绍兴日报;2007年
10 刘楠;我国首个电厂能耗实时监控系统问世[N];中国知识产权报;2008年
相关博士学位论文 前1条
1 郝亮;面向能耗优化的云计算资源调度算法研究[D];哈尔滨工业大学;2015年
相关硕士学位论文 前10条
1 黄健刚;温和地区高校教学楼建筑能耗定额研究[D];昆明理工大学;2015年
2 尚振东;铣镗床能耗测试与分析研究[D];哈尔滨工业大学;2015年
3 孙红艳;基于能源统计的山东省城镇住宅建筑能耗的研究[D];重庆大学;2015年
4 胡文虹;水泥厂能耗排放无线实时监测系统设计与实现[D];大连理工大学;2015年
5 刘作鹏;建筑能耗无线监测系统的研究与设计[D];大连理工大学;2015年
6 柳红日;面向SLA和负载均衡及能耗的多目标云资源调度研究[D];哈尔滨工业大学;2015年
7 张雪莱;基站能耗典型场景划分及标杆制定[D];北京邮电大学;2015年
8 王颖;云计算平台中的能耗优化管理研究[D];南京邮电大学;2015年
9 丁洪利;面向延迟及能耗优化的云计算数据部署研究[D];合肥工业大学;2015年
10 徐兆华;基于.NET的高校能耗系统研究[D];吉林大学;2015年
,本文编号:2222323
本文链接:https://www.wllwen.com/jingjilunwen/quyujingjilunwen/2222323.html