当前位置:主页 > 经济论文 > 区域经济论文 >

电商集中促销期间物流峰值统计模型仿真

发布时间:2019-06-24 17:46
【摘要】:电商集中促销期间会产生物流峰值,物流峰值的变化受到消费区域、经济水平、人员结构等复杂因素的影响,峰值出现的时间和大小的估计过程存在众多因素干扰。传统的估计方法在进行电商集中促销期间物流峰值统计的过程中,受到诸多印象的影响,物流峰值估计的相关参数选择缺少准确约束,使得物流峰值统计模型的可信度降低。提出基于K均值粒子群滤波的电商集中促销期间物流峰值统计方法。根据K均值算法对全部类型的电商进行分类,获取不同类型的电商对于物流峰值的影响程度。根据粒子群滤波算法的原理,将不同类型的电商看作一个个独立的粒子进行训练。根据训练结果,对当前全部电商集中促销期间的促销行为对物流峰值的影响进行估计。实验结果表明,改进算法能够对电商集中促销期间物流峰值进行精确统计。
[Abstract]:The peak value of logistics will occur during the centralized promotion of e-commerce. The change of peak value of logistics is affected by the complex factors such as consumption area, economic level, personnel structure and so on. There are many factors interfering with the estimation process of the peak value. The traditional estimation method is affected by many impressions in the process of logistics peak value statistics during the centralized promotion of e-commerce. The selection of related parameters of logistics peak estimation is lack of accurate constraints, which reduces the credibility of the logistics peak statistical model. A statistical method of logistics peak value during centralized promotion of e-commerce based on K-means particle swarm optimization is proposed. According to the K-means algorithm, all types of e-commerce are classified, and the influence degree of different types of e-commerce on logistics peak value is obtained. According to the principle of particle swarm optimization algorithm, different types of e-quotient are trained as independent particles. According to the training results, the influence of the promotion behavior on the logistics peak value during the current centralized promotion of e-commerce is estimated. The experimental results show that the improved algorithm can accurately count the logistics peak value during the centralized promotion of e-commerce.
【作者单位】: 南开大学经济学院;
【分类号】:F713.36;TP18

【参考文献】

相关期刊论文 前6条

1 薛子君;;美的:小家电销售冠军的电商化之路[J];成功营销;2013年12期

2 马林;白广忱;周平;;基于混沌粒子群优化算法的压气机盘低循环疲劳寿命概率稳健设计[J];航空发动机;2013年06期

3 赵光柱;张凌波;顾幸生;;基于改进云粒子群优化的模糊神经网络在甲醇合成转化率软测量中的应用[J];华东理工大学学报(自然科学版);2013年06期

4 饶钰;;粒子群优化算法在系统经济调度中的应用[J];中小企业管理与科技(下旬刊);2013年12期

5 万华;常珊;涂淑琴;;K-均值聚类算法在网络商城促销中的应用[J];现代计算机(专业版);2013年35期

6 王猛;郭翔;吴昊;;销售渠道日趋多元 监管如何跟上脚步[J];营销界(农资与市场);2014年01期

【二级参考文献】

相关期刊论文 前10条

1 戴朝华;朱云芳;陈维荣;林建辉;;云遗传算法及其应用[J];电子学报;2007年07期

2 陈治明;;新型量子粒子群算法及其性能分析研究[J];福建电脑;2010年05期

3 段巍;赵峰;;结构可靠性分析的响应面方法比较研究[J];中国工程机械学报;2009年04期

4 杨伟新;张晓森;;粒子群优化算法综述[J];甘肃科技;2012年05期

5 唐俊星;陆山;;某涡轮盘低循环疲劳概率寿命数值模拟[J];航空动力学报;2006年04期

6 刘建华;樊晓平;瞿志华;;一种惯性权重动态调整的新型粒子群算法[J];计算机工程与应用;2007年07期

7 刘春涛;林志航;;基于响应面和支持向量机的产品健壮设计方法[J];计算机辅助设计与图形学学报;2006年08期

8 张艳琼;;改进的云自适应粒子群优化算法[J];计算机应用研究;2010年09期

9 朱学军,王安麟,黄洪钟;基于健壮性的机械设计方法[J];机械科学与技术;2000年02期

10 高阳;白广忱;于霖冲;;基于RBF神经网络的涡轮盘疲劳可靠性分析[J];机械设计;2009年05期



本文编号:2505245

资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/quyujingjilunwen/2505245.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dde0c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com