当前位置:主页 > 经济论文 > 资本论文 >

中国房地产行业上市公司财务危机预警实证研究

发布时间:2018-03-22 10:19

  本文选题:房地产上市公司 切入点:财务危机预警 出处:《东北财经大学》2013年硕士论文 论文类型:学位论文


【摘要】:房地产业是国民经济的支柱产业,房地产上市公司的财务健康与否直接影响到市场各利益主体,影响到整个国民经济和社会的发展。由于房地产行业是典型的资金密集行业,具有投资大、周期长、风险高、收益高、供应链长、地域性强的特点,而近年来国家多番宏观调控政策对房地产行业的发展产生了巨大影响,房地产企业的财务风险隐患已有所暴露,国内的房地产企业要想生存发展,财务风险的解决势在必行。因此建立一个适合我国房地产企业的财务危机预警模型,对企业的财务和运营情况进行预测,具有现实意义。 本文的研究首先是基于对国内外财务危机预警资料和文献的广泛阅读和整理,然后考虑了房地产行业基本特征,分析了企业陷入财务危机的相关因素,并从这些因素着手,选取相关的研究变量,在对这些研究变量进行统计分析的基础上来建立模型,从而构建适合我国的房地产上市公司的财务危机预警模型。研究的内容具体包括以下五部分: 第一部分,绪论。主要说明了对房地产上市公司进行财务预警研究的现实背景以及理论背景,阐述本文研究意义,提出文章的研究框架和具体内容、研究方法和创新点。 第二部分,研究综述。主要对财务危机和财务预警的内涵进行了界定,对国内外学者在财务危机预警领域的研究成果进行了回顾与评析,从而为本文的研究建立了理论基础。同时特别阐述了我国近几年在房地产财务危机预警方面的研究现状,分析了财务预警理论的发展趋势。 第三部分,我国房地产行业财务危机分析。结合我国房地产行业的现状和发展特点,阐述我国的房地产公司所面临的财务风险,分析了影响房地产行业发展的宏观和微观因素。 第四部分,实证研究。系统的解释本研究所需要采用的方法,说明了研究样本的选取和剔除过程和数据来源,预警指标的设计,并应用SPSS19.0统计软件对数据指标进行了筛选:先进行K-S正态性分布检验,对符合正态性分布的指标又实施了独立样本T检验,而对不符合正态性分布的指标数据进行了非参数检验,之后对筛选出来的显著指标进行了因子分析,提取了主成分。本文的主要创新点在于在因子分析的基础上,构建了基于2009、2010、2011三年加权平均数据的Logistic模型(M1),试错性的将临界值由传统的0.5调整为0.38,对模型的拟合度进行了检验,并用2012年的数据进行回带以检验模型的预测效果。为了进行对比,本文还建立了仅基于2009年数据基础上的Logistic模型(M2),对两个模型M1和M2进行了对比分析。 第五部分,研究结论与展望。总结本文的实证研究成果和不足,对未来的研究进行了展望,并对房地产业财务危机预警提出相关建议。 实证研究结果表明:与仅以2009年数据为基础建立的模型(M2)相比,以2009、2010、2011三年加权平均数据所建立的模型(M1)拟合度和预测效果更高,M1模型预测准确率高达98.1%,同时,用2012年的回带数据检验显示的准确率达到了76.19%,因此我们最终选择M1模型作为本文研究的对象。M1模型主要由因子3(盈利能力、公司规模、托宾Q)和因子4(盈利能力)解释,可以看出对房地产业财务危机影响最大的是盈利能力,盈利能力越强,发生财务危机的可能性越小,呈负相关。与此类似,可以得出公司的资产规模和市场价值与发生财务危机的可能性负相关。
[Abstract]:The real estate industry is the pillar industry of the national economy, the real estate listed company's financial health or not directly affect the market stakeholders and influence on the national economy and social development. Because of the real estate industry is a typical capital intensive industry, with large investment, long cycle, high risk, high income, long supply chain strong regional characteristics, and has a great impact in recent years national macro-control policies on the real estate industry development, the exposure of financial risks for real estate enterprises, the domestic real estate enterprises to survive and develop, it is imperative to solve the financial risk. Therefore the establishment of a suitable for China's real estate enterprises the financial crisis early-warning model to predict the financial and business operations, is of practical significance.
This study is the first extensive reading of domestic and international financial crisis early warning information and literature and consolidation based on, then we consider the basic characteristics of the real estate industry, analyzes the factors of enterprise financial crisis, and proceed from these factors, the selection of research variables related to these research variables, on the basis of statistical analysis of building up the model, in order to build the early warning model of financial crisis for China's real estate listed companies. The research content includes the following five parts:
The first part is the introduction. It mainly describes the realistic background and theoretical background of the financial early-warning research for real estate listed companies, expounds the significance of this research, and puts forward the research framework and specific contents, research methods and innovation points of the article.
The second part of the review, the main connotation. The financial crisis and financial early-warning are defined, the domestic and foreign scholars in the field of financial crisis early-warning research conducted a review and analysis, so as to establish a theoretical foundation for this research. At the same time especially elaborated our country in recent years in the real estate financial crisis early warning of the study on the current situation, analyzes the development trend of the financial early-warning theory.
The third part, the financial crisis analysis of China's real estate industry. Combined with the current situation and development characteristics of China's real estate industry, this paper expounds the financial risks faced by China's Real Estate Company, and analyzes the macro and micro factors that affect the development of the real estate industry.
The fourth part is the research and empirical research. Systematic explanation methods used in this study to illustrate the study sample selection and elimination process and the source of the data, the design of early warning indicators, and indicators of data were screened using the SPSS19.0 statistical software: K-S advanced distribution normality test, in accord with normal distribution index and the implementation of the independent sample T test, and do not conform to the normal distribution of the index data of the non parametric test, after the significant indicators screened by factor analysis, principal component extraction. The main innovations in based on the factor analysis, constructing the Logistic model 200920102011 three years weighted based on the data of average (M1), the critical value of trial and error adjustment from 0.5 traditional is 0.38, the fitting degree of the model is tested, and brought back to test the model's predictions for the 2012 data In order to compare, the Logistic model (M2) based on the data of 2009 is also established, and the two models, M1 and M2, are compared and analyzed.
The fifth part, the research conclusions and prospects, summarizes the empirical research results and shortcomings of this paper, forecasts the future research, and puts forward some suggestions for the early warning of real estate financial crisis.
The empirical results show that: only based on 2009 data model (M2) compared to 200920102011 in three years, the weighted average of the established data model (M1) prediction effect and higher fitting degree, M1 model prediction accuracy rate of up to 98.1%, at the same time, with the 2012 back accuracy with data display test up to 76.19%, so we chose the M1 model as the object of the.M1 model in this paper is mainly composed of 3 factors (profitability, company size, Tobin Q) and factor 4 (profitability), we can see that the maximum of the financial crisis the real estate industry affect the profitability, stronger profitability, possibility of financial the crisis is small, negative correlation. Similarly, it can be the company's asset size and market value and the possibility of financial crisis is negative.

【学位授予单位】:东北财经大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:F299.233.4;F275

【相似文献】

相关期刊论文 前10条

1 王冬梅;;财务危机预警模型研究综述[J];市场论坛;2009年05期

2 王满;李坤榕;;上市公司财务危机预警的实证分析[J];中国总会计师;2010年01期

3 王媛媛;邢庆娇;;国内外财务危机预警研究综述[J];现代商贸工业;2010年20期

4 王硕非;;从现金增量指标探究财务危机预警问题[J];商业文化(上半月);2011年09期

5 蒋太才;伍晶晶;卢宇;;国内外财务危机预警研究综述[J];企业导报;2011年21期

6 卢瑞琼;李淑锦;;财务危机预警分析的Z计分模型应用研究[J];魅力中国;2010年12期

7 吴少平,李小燕;谈财务危机预警分析指标的确定标准[J];金融科学;2000年01期

8 车晓娜,李立春;财务危机预警模式[J];上海会计;2001年11期

9 仝玲;企业财务危机预警概念辩析[J];统计与决策;2002年10期

10 唐有瑜;财务危机预警模型及其在信贷风险管理中的应用[J];金融论坛;2002年01期

相关会议论文 前9条

1 王泽霞;黎良燕;;基于主营视角的财务危机预警模型构建研究——来自我国制造业上市公司的经验证据[A];中国会计学会高等工科院校分会2009年学术会议(第十六届学术年会)论文集[C];2009年

2 陈娟;孟琳;;财务危机预警模型——Z计分模型的应用分析[A];中国会计学会2013年学术年会论文集[C];2013年

3 杨淑娥;;企业财务危机预警的经济动因与循环机理剖析[A];中国会计学会第四届全国会计信息化年会论文集(上)[C];2005年

4 王满;李坤榕;;辽宁省上市公司财务危机预警的实证分析——基于Z值评分模型的研究[A];2008年度中国总会计师优秀论文选[C];2009年

5 徐光华;沈弋;;企业内部控制与财务危机预警耦合研究——一个基于契约理论的分析框架[A];中国会计学会2011学术年会论文集[C];2011年

6 贾炜莹;申贵成;;基于主成分支持向量机的财务危机预警研究[A];中国会计学会2013年学术年会论文集[C];2013年

7 骆s,

本文编号:1648221


资料下载
论文发表

本文链接:https://www.wllwen.com/jingjilunwen/zbyz/1648221.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户76db1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com