变转速条件下油槽结构对液粘传动特性的影响研究
本文关键词:变转速条件下油槽结构对液粘传动特性的影响研究 出处:《江苏大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 液粘传动 液粘离合器 非结构化网格 变转速 油槽结构 传动特性
【摘要】:液粘传动是采用摩擦片间油膜传递动力,通过改变油膜厚度来实现无级调速的一种新兴的流体传动方式,在节能调速领域具有重要的应用价值。目前,国内外学者对液粘传动的机理进行了大量的研究,但尚未研究定转差下被动片转速和油槽结构对液粘传动特性的影响。针对以上问题,本文开展了以下研究:建立液粘传动的基本数学模型和摩擦片间油膜数值计算模型,在考虑结构化网格和非结构化网格差异的基础上,进行了数值计算模型的网格无关性验证,最终得到最适合本文数值计算的网格划分方案。采用理论推导和数值计算相结合的方法,研究了定转差下被动片转速对液粘传动特性的影响,研究结果表明:随着被动片转速增大,摩擦片间流体压力分布愈加复杂,转折值减小,非油槽区流体径向速度降低,非油槽区油膜覆盖率下降,传递转矩降低,而流体温升大幅增大。结合数值计算结果,研究了油槽结构对油膜传递动力的影响规律,提出了一种可以提高油膜传递扭矩的方案,即沿着半径增大方向,逐渐减小油槽的宽度和深度。并在定转差变转速条件下,以外径处的油槽角度和油槽深度为变量,研究了油槽宽度和油槽深度在半径方向变化对液粘传动特性的影响。研究结果表明:外径处油槽宽度减小,则传递转矩增大,而温升未增大,外径处油槽角度2?=0.5?时的传递转矩约为2?=4.5?时传递转矩的200%;外径处油槽深度减小,则传递转矩增大,而温升未增大,当外径处油槽深度减小到2h=0.05mm时,传递转矩约为2h=0.2mm时传递转矩的150%。根据实验方案搭建了液粘离合器实验台,实验结果表明:定转差条件下,液粘离合器传递转矩随被动片转速增大而减小;在定转差变转速条件下,外径处油槽深度减小,传递转矩增大,而流体温升无明显变化。
[Abstract]:Hydro viscous transmission is a new fluid transmission mode which realizes the stepless speed regulation by changing the oil film thickness through the transmission of oil film between the friction discs. It has important application value in the field of energy saving and speed regulation. At present, scholars at home and abroad have done a lot of research on the mechanism of liquid viscous transmission, but the influence of rotational speed and oil groove structure on the transmission characteristics of liquid viscous has not been studied yet. To solve the above problems, this paper carried out the following research: computing model of liquid viscous transmission of the basic mathematical model and friction between oil film numerical based on structured and unstructured grids on the difference, the grid numerical model to verify, finally obtain the meshing scheme is most suitable for the numerical calculation. Using the method of theoretical derivation and numerical calculation combined with the effect of passive film speed slip on the transmission characteristics of liquid viscosity, the results show that with the passive film speed increases, friction between the fluid pressure distribution is more complex, turning value decreases, the non oil groove radial velocity is reduced, the non oil tank area the oil film coverage rate decreased, the transmission torque is reduced, while the fluid temperature rise greatly. Combined with the numerical results, the influence of the oil groove structure on the transmission power of the oil film is studied. A scheme that can increase the transmission torque of the oil film is put forward, that is, the width and depth of the oil groove gradually decrease along the radius increasing direction. Under the condition of fixed rotation and differential speed, the influence of oil groove width and depth of oil groove on the fluid viscous transmission characteristics is studied based on the angle of oil groove and the depth of oil groove at outer diameter. The results show that: the diameter of oil groove width decreases, while the transmission torque is increased, and the temperature rise is not increased, the outer diameter of oil groove angle of 2? =0.5? The transfer torque is about 2? =4.5? When the transfer torque of 200%; the outside diameter of oil groove depth decreases, while the transmission torque increases, while the temperature did not increase when the outside diameter, reducing oil groove depth to 2h=0.05mm, the transmission torque is about 150% 2h=0.2mm when the torque transmission. According to the experimental scheme to build viscous clutch test rig, the experimental results show that under the condition of constant slip, viscous clutch torque decreases with the increasing speed of passive film; variable speed in speed, diameter of oil groove depth is reduced, the transmission torque is increased, and the flow temperature had no obvious change.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TH137
【参考文献】
相关期刊论文 前10条
1 崔红伟;姚寿文;邓元元;;液黏传动双圆弧油槽摩擦副油膜剪切转矩研究[J];重庆大学学报;2016年05期
2 熊钊;苑士华;吴维;彭增雄;;湿式离合器对偶片间油气两相流动的数值模拟[J];机械工程学报;2016年16期
3 延春明;;煤矿带式输送机安全保护装置研究与应用[J];能源与节能;2016年02期
4 郑少青;刘金刚;杨劲军;陈禄辉;;汽车起重机湿式离合器摩擦片油槽改进及有限元分析[J];起重运输机械;2015年10期
5 段晓伟;王向东;;大功率风机水泵调速节能方法对比分析[J];节能;2012年05期
6 权洁;孟庆睿;;液体粘性传动摩擦副间油膜传递扭矩的研究[J];液压与气动;2012年01期
7 谢方伟;侯友夫;张立强;袁晓明;宋喜福;席涛;;液黏传动变形界面间油膜温度场实验研究[J];中南大学学报(自然科学版);2011年12期
8 黄家海;邱敏秀;方文敏;;液黏调速离合器中摩擦副间隙内流体传热分析[J];浙江大学学报(工学版);2011年11期
9 谢方伟;侯友夫;;液体黏性传动变形摩擦副间油膜压力场[J];工程机械;2011年02期
10 张世军;林腾蛟;吕和生;;湿式摩擦离合器摩擦片油槽对瞬态传热的影响[J];机械设计;2009年11期
相关博士学位论文 前4条
1 黄家海;液粘调速离合器流体剪切传动机理研究[D];浙江大学;2011年
2 谢方伟;温度场及变形界面对液粘传动特性影响规律的研究[D];中国矿业大学;2010年
3 张志刚;关于湿式离合器几个工作特性研究[D];浙江大学;2010年
4 陈宁;液体粘性传动(HVD)技术的研究[D];浙江大学;2003年
相关硕士学位论文 前3条
1 王坤;液体粘性传动研究及应用[D];山东科技大学;2010年
2 肖磊;液体粘性传动特性及实验研究[D];山东科技大学;2008年
3 廖玲玲;流体油膜剪切传动理论及实验研究[D];浙江大学;2006年
,本文编号:1343972
本文链接:https://www.wllwen.com/jixiegongchenglunwen/1343972.html